Ready for Fields\&Waves?

Prof. Dr. Jens Förstner

September 27, 2016

The following questions cover a range of topics you should master (i.e. $>75 \%$ correct answers) before starting the course Fields\&Waves in the Electrical Systems Engineering programm at Paderborn University:

1. Evaluate
(a) $\sin \frac{\pi}{2}=1$
(b) $\cos \frac{\pi}{2}=0$
(c) $\sin ^{2} x+\cos ^{2} x=1$
(d) $\exp (0)=1$
(e) $\exp \left(-\frac{\pi}{2} j\right)=-j$
2. Express $e^{j x}$ in terms of sin and \cos (Euler's identity): $e^{j x}=\cos x+j \sin x$
3. Give the general real-valued solution of the ODEs
(a) $\frac{d^{2}}{d t^{2}} y(t)=-\omega^{2} y(t)($ with $\omega \neq 0): y(t)=a \cos (\omega t)+b \sin (\omega t)$ or $a \sin (\omega t+\phi)$
(b) $\frac{d}{d t} y(t)=-\gamma y(t)($ with $\gamma \neq 0): y(t)=a e^{-\gamma t}$
4. Give the solution of the Fourier integral $g(\omega)=\int_{-\infty}^{\infty} g(t) e^{-j \omega t} d t$ for
(a) $g(t)=\frac{d}{d t} f(t)$ (assume $f(\omega)$ is known): $\Rightarrow g(\omega)=-j \omega f(\omega)$
(b) $g(t)=f(t) e^{j \omega_{0} t}$ (assume $f(\omega)$ is known) $\Rightarrow g(\omega)=f\left(\omega-\omega_{0}\right)$
(c) $g(t)=\sin \left(\omega_{0} t\right) \Rightarrow g(\omega)=\pi \delta\left(\omega-\omega_{0}\right)-\pi \delta\left(\omega+\omega_{0}\right)$
5. Vector products, Give
(a) the projection of a vector \vec{a} on a normalized vector $\vec{n}:=\vec{a} \cdot \vec{n}=a \cos \phi$
(b) the inner product $\vec{a} \cdot \vec{b}$ in cartesian coordinates: $=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}$
(c) the length of a vector \vec{a} using the innter product: $=\sqrt{\vec{a} \cdot \vec{a}}$
(d) the vector product $\vec{a} \times \vec{b}$ in cartesian coordinates: $=\left(\begin{array}{l}a_{y} b_{z}-a_{z} b_{y} \\ a_{z} b_{x}-a_{x} b_{z} \\ a_{x} b_{y}-a_{y} b_{x}\end{array}\right)$
6. Evaluate the following expressions (or mark if invalid):
(a) $\operatorname{grad} 5=0$
(b) curl $4=$ Invalid expression
(c) $\operatorname{grad}\left(x^{2}+y^{3}\right)=\left(\begin{array}{c}2 x \\ 3 y^{2} \\ 0\end{array}\right)$
(d) curl $\operatorname{grad} \vec{v}(\vec{r})=0$
(e) $\operatorname{div}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=3$
(f) $\operatorname{curl}\left(\begin{array}{l}0 \\ 0 \\ y\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$
7. State Stokes' and Gauss' theorems:
(a) $\int_{V} \operatorname{div} \vec{v}(\vec{r}) d V=\oint_{\partial V} \vec{v}(\vec{r}) \cdot d \vec{a}$
(b) $\int_{A} \operatorname{curl} \vec{v}(\vec{r}) \cdot d \vec{a}=\oint_{\partial A} \vec{v}(\vec{r}) \cdot d \vec{s}$
8. Give the electrostatic potential of a point charge q located at the the position $\vec{s}: \varphi(\vec{r})=\frac{q}{4 \pi \epsilon_{0}|\vec{r}-\vec{s}|}$
9. Write down the four Maxwell equations (for material/medium, in differential form, SI units):
(a) $\operatorname{curl} \vec{E}=-\frac{d}{d t} \vec{B}$
(b) $\operatorname{curl} \vec{H}=\frac{d}{d t} \vec{D}+\vec{J}$
(c) $\operatorname{div} \vec{D}=\rho$
(d) $\operatorname{div} \vec{B}=0$
10. Which electric and magnetic field components are continuous at an interface?B normal, E tangential
11. For a perfect electric conductor, the electric field strength
(a) inside is:0
(b) at the surface is:orthogontal on surface
12. In a medium give (in terms of the real-valued e.m. fields) the definitions of
(a) the Poynting vector: $\vec{S}=\vec{E} \times \vec{H}$
(b) the electromagnetic energy (in a volume V): $W=\frac{1}{2} \int_{V}(\vec{E} \cdot \vec{D}+\vec{H} \cdot \vec{B}) d V$
13. Give the units (in SI) of
(a) the electric field strength: $[\vec{E}]=V / m$
(b) the magnetic flux denisity: $[\vec{B}]=V s / m^{2}=T$
(c) the current density: $[\vec{J}]=A / m^{2}$
(d) the charge density: $[\rho]=C / m^{3}=A s / m^{3}$
