Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Publikationen


Liste im Research Information System öffnen

2021

Zeipert, H., Claes, L., Johannesmann, S., Lugovtsova, Y., Nicolai, M., Prager, J., & Henning, B. (2021). An approach to adhesive bond characterisation using guided acoustic waves in multi-layered plates. At - Automatisierungstechnik, 962–969. https://doi.org/10.1515/auto-2021-0089

An approach for the non-destructive characterisation of adhesive bonds using guided ultrasonic waves is presented. Pulsed laser radiation is used to thermoacoustically excite broadband ultrasonic waves in a multi-layered sample, consisting of a metal plate adhesively joined to a polymeric layer using synthetic resin. The resulting signals are received by a purpose-built piezoelectric transducer. Varying the distance between excitation and detection yields spatio-temporal measurement data, from which the dispersive properties of the propagating waves can be inferred using a two-dimensional Fourier transform, assuming the plates to act as coupled waveguides. Coupled multi-layered waveguides show an effect referred to as <jats:italic>mode repulsion</jats:italic>, where the distance between certain modes in the frequency-wavenumber domain is assumed to be a measure of coupling strength. Measurements at different stages of curing of the adhesive layer are performed and evaluated. A comparison of the results shows changes in the dispersive properties, namely an increased modal bandwidth for the fully cured sample as well as an increased modal distance.


Dreiling, D., Itner, D., Feldmann, N., Scheidemann, C., Gravenkamp, H., & Henning, B. (2021). Application and modelling of ultrasonic transducers using 1-3 piezoelectric composites with structured electrodes. Fortschritte Der Akustik - DAGA 2021. DAGA 2021 - 47. JAHRESTAGUNG FÜR AKUSTIK, Wien.

Waveguide-based methods can be used for the non-destructive determination of acoustic material parameters. One of these methods is based on transmission measurements of cylindrical polymeric specimens. Here, the experimental setup consists of two transducers, which excite and receive the waveguide modes at the faces of the cylinder. The measurement, as well as a forward model, are used to determine material parameters of the polymeric specimen in an inverse approach. 1-3 piezoelectric composites are used as an active element because they can be approximated by a thickness vibration only. This allows an easy identification of Mason model parameters to characterise the transducers’ vibration behaviour. However, sensitivity analysis shows a high uncertainty in the determination of the mechanical shear parameters due to the uniform excitation. To increase the sensitivity to these shear motions, arbitrary excitations were investigated by means of numerical simulation. In order to be able to realise the determined optimal excitation, new transducer prototypes were designed. By subdividing the electrodes of the active element, for example, ring-shaped excitation is feasible. Furthermore, it can be shown that modelling these transducers with a one-dimensional Mason model is sufficient.


Itner, D., Gravenkamp, H., Dreiling, D., Feldmann, N., & Henning, B. (2021). Efficient semi-analytical simulation of elastic guided waves in cylinders subject to arbitrary non-symmetric loads. Ultrasonics. https://doi.org/10.1016/j.ultras.2021.106389


Claes, L., Schmiegel, H., Grünsteidl, C., Johannesmann, S., Webersen, M., & Henning, B. (2021). Investigating peculiarities of piezoelectric detection methods for acoustic plate waves in material characterisation applications. Tm - Technisches Messen, 88(3), 147–155. https://doi.org/10.1515/teme-2020-0098

Acoustic waves in plates have proven a viable tool for testing and material characterisation purposes. There are a multitude of options for excitation and detection of theses waves, such as optical and piezoelectric systems. While optical systems, with thermoelastic excitation and interferometric detection, have the benefit of being contactless, they usually require rather complex and expensive experimental setups. Piezoelectric systems are more easily realised but require direct contact with the specimen and usually have a limited bandwidth, especially in case of piezoelectric excitation. In this work, the authors compare the properties of piezoelectric and optical detection methods for broad-band acoustic signals. The shape (e. g. the displacement) of a propagating plate wave is given by its frequency and wave number, allowing to investigate correlations between mode shapes and received signal strengths. This is aided by evaluations in normalised frequency and wavenumber space, facilitating comparisons of different specimens. Further, the authors explore possibilities to utilise the specific properties of the detection methods to determine acoustic material parameters.


Johannesmann, S., Claes, L., & Henning, B. (2021). Lamb wave based approach to the determination of elastic and viscoelastic material parameters. Tm - Technisches Messen, 88(s1), s28–s33. https://doi.org/10.1515/teme-2021-0070


Zeipert, H., Claes, L., Johannesmann, S., Webersen, M., Lugovtsova, Y., Prager, J., & Henning, B. (2021). Measurement and Simulation of Lamb Waves in Adhesive-bonded Multilayer Systems (pp. 91–92). Presented at the Sensor and Measurement Science International, Nürnberg. https://doi.org/10.5162/SMSI2021/A8.2


Claes, L., Chatwell, R. S., Baumhögger, E., Hetkämper, T., Zeipert, H., Vrabec, J., & Henning, B. (2021). Measurement procedure for acoustic absorption and bulk viscosity of liquids. Measurement. https://doi.org/10.1016/j.measurement.2021.109919


Claes, L. (2021). Messverfahren für die akustische Absorption in reinen Fluiden zur Bestimmung der Volumenviskosität. Universiät Paderborn. https://doi.org/10.17619/UNIPB/1-1104

The prerequisite for a complete description of fluid dynamic and acoustic processes is that all properties of the fluid are known.While fluid parameters such as the speed of sound or the shear viscosity are known for many liquids over a wide range of thermodynamic states, only limited measurement data exist for the bulk viscosity.In this thesis, a measurement method for the selective determination of the bulk viscosity of liquids, based on the absorption of ultrasonic waves, is developed and implemented.The focus is on the simulation-driven design of algorithms for processing the measurement signals as well as the analysis and further development of a measurement set-up based on the pulse-echo method.In addition to absorption in the fluid, there are other effects (for example diffraction or incomplete reflection) that weaken or otherwise influence the acoustic signal.Therefore, the development of procedures to separate these effects from acoustic absorption is another focus of this work.The bulk viscosity is determined from the measured acoustic absorption for different fluids in different thermodynamic states. An uncertainty analysis of the measured quantities concludes this thesis.


Feldmann, N., Schulze, V., Claes, L., Jurgelucks, B., Meihost, L., Walther, A., & Henning, B. (2021). Modelling damping in piezoceramics: A comparative study. Tm - Technisches Messen, 88(5), 294–302. https://doi.org/10.1515/teme-2020-0096

The progress in numerical methods and simulation tools promotes the use of inverse problems in material characterisation problems. A newly developed procedure can be used to identify the behaviour of piezoceramic discs over a wide frequency range using a single specimen via fitting simulated and measured impedances by optimising the underlying material parameters. Since there is no generally accepted damping model for piezoelectric ceramics, several mechanical damping models are examined for the material identification. Three models have been chosen and their ability to replicate the measured impedances is evaluated. On the one hand, the common Rayleigh model is considered as a reference. On the other hand, a Zener model and a model using complex constants are extended to model the transversely isotropic material. As the Rayleigh model is only valid for a limited frequency range, it fails to model the broadband behaviour of the material. The model using complex constants leads to the best fit over a wide frequency range while at the same time only adding three additional parameters for modelling damping. Thus, damping can be assumed approximately frequency-independent in piezoceramics.


Itner, D., Gravenkamp, H., Dreiling, D., Feldmann, N., & Henning, B. (2021). On the forward simulation and cost functions for the ultrasonic material characterization of polymers . GAMM Annual Meeting, Kassel.


Schulze, V., Schmidt, S., Jurgelucks, B., Feldmann, N., & Claes, L. (2021). Optimal experiment design with respect to electrode configurations for a piezoelectric problem. GAMM Annual Meeting, Kassel.


Claes, L., Feldmann, N., Jurgelucks, B., Schulze, V., Schmidt, S., Walther, A., & Henning, B. (2021). Optimised Multi-Electrode Topology for Piezoelectric Material Characterisation (pp. 237–238). Presented at the Sensor and Measurement Science International, Nürnberg. https://doi.org/10.5162/SMSI2021/A10.1


Schulze, V., Schmidt, S., Jurgelucks, B., Feldmann, N., & Claes, L. (2021). Piezoelectric BC Modeling for Electrode Shapes with OED. GAMM Juniors’ Summer School 2021, Graz.


Claes, L., & Webersen, M. (2021). pyfds 0.1.4 - modular field simulation tool. GitHub, Inc. https://doi.org/10.5281/ZENODO.2649826


Zeipert, H., Johannesmann, S., Nicolai, M., Lugovtsova, Y., Prager, J., & Henning, B. (2021). Quantifying the coupling strength of adhesively bonded materials by investigating mode repulsion regions. Fortschritte Der Akustik - DAGA 2021. DAGA 2021 - 47. Jahrestagung für Akustik, Wien.


Itner, D., Gravenkamp, H., Dreiling, D., Feldmann, N., & Henning, B. (2021). Simulation of guided waves in cylinders subject to arbitrary boundary conditions for applications in material characterization. PAMM. https://doi.org/10.1002/pamm.202000232


Hetkämper, T., Dreiling, D., Claes, L., & Henning, B. (2021). Tomographie des Schallfelds von Ultraschallwandlern mittels Schlierentechnik. Fortschritte der Akustik - DAGA 2021. DAGA 2021 - 47. Jahrestagung für Akustik.


Webersen, M. (2021). Zerstörungsfreie Charakterisierung der elastischen Materialeigenschaften thermoplastischer Polymerwerkstoffe mittels Ultraschall. Universitätsbibliothek Paderborn. https://doi.org/10.17619/UNIPB/1-1088

Die präzise Kenntnis der Eigenschaften verwendeter Materialien hat große Bedeutung für den Entwurf technischer Systeme aller Art, aber auch für die Überwachung solcher Systeme im Betrieb. Für verschiedene physikalische Eigenschaften, Betriebsbedingungen und Materialklassen werden daher geeignete messtechnische Verfahren zur Materialcharakterisierung benötigt. In der vorliegenden Arbeit wird ein Verfahren zur ultraschallbasierten Charakterisierung der mechanischen Eigenschaften von homogenen und faserverstärkten thermoplastischen Polymeren unter Berücksichtigung der Richtungsabhängigkeit vorgestellt. Plattenförmige Probekörper werden dazu mittels Laser-Pulsen hoher Energie breitbandig angeregt und die resultierenden akustischen Lamb-Wellen aufgezeichnet. Auf Basis der dispersiven Eigenschaften der detektierten Wellenleitermoden werden in einem inversen Verfahren die Parameter eines linear-elastischen Materialmodells identifiziert. Darüber hinaus wird ein Verfahren zur vollständigen Charakterisierung der Richtungsabhängigkeit in orthotropen Materialien wie Faserverbundwerkstoffen unter Verwendung eines zweidimensionalen Simulationsmodells vorgestellt. Das Messverfahren wird anhand einer Untersuchungsreihe an künstlich gealterten Polymer- und Faserverbundwerkstoffen verifiziert und die Übertragbarkeit der Ergebnisse auf den quasistatischen Fall betrachtet. Im Vergleich mit den Ergebnissen mechanischer Zugversuche werden die Voraussetzungen und Einschränkungen, insbesondere durch die Annahme eines ideal-elastischen Materialmodells, diskutiert.


Lugovtsova, Y., Zeipert, H., Johannesmann, S., Nicolai, M., Prager, J., & Henning, B. (2021). К ОПРЕДЕЛЕНИЮ ПРОЧНОСТИ КЛЕЕВОГО СОЕДИНЕНИЯ В МНОГОСЛОЙНЫХ МАТЕРИАЛАХ ПУТЕМ ИССЛЕДОВАНИЯ ОБЛАСТЕЙ РАСТАЛКИВАНИЯ БЕГУЩИХ УПРУГИХ ВОЛН. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ В ЕСТЕСТВЕННЫХ НАУКАХ - XXX Всероссийская Школа-Конференция. МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ В ЕСТЕСТВЕННЫХ НАУКАХ - XXX Всероссийская школа-конференция, Perm.


2020

Hetkämper, T., Krumme, M., Dreiling, D., & Claes, L. (2020). A modular, scalable open-hardware platform for project-based laboratory courses in electrical engineering studies. In SEFI 48th Annual Conference Proceedings - Engaging Engineering Education (pp. 1309–1313). Enschede: SEFI.


Krumme, M., Webersen, M., Claes, L., & Webersen, Y. (2020). Analoge Klangsynthese zur Vermittlung von Grundkenntnissen der Signalverarbeitung an Studierende nicht-technischer Fachrichtungen. In Fortschritte der Akustik - DAGA 2020 (pp. 542–545).


Johannesmann, S., Becker, S., Webersen, M., & Henning, B. (2020). Determination of Murnaghan constants of plate-shaped polymers under uniaxial tensile load. In SMSI 2020 - Measurement Science. Nuremberg. https://doi.org/10.5162/SMSI2020/D6.1


Claes, L., Steidl, C., Hetkämper, T., & Henning, B. (2020). Estimation of acoustic wave non-linearity in ultrasonic measurement systems. ArXiv.Org.


Dreiling, D., Itner, D. T., Feldmann, N., Gravenkamp, H., & Henning, B. (2020). Increasing the sensitivity in the determination of material parameters by using arbitrary loads in ultrasonic transmission measurements. Presented at the Sensor and Measurement Science International, Nürnberg: AMA Service GmbH. https://doi.org/10.5162/SMSI2020/D1.3


Feldmann, N., Schulze, V., Claes, L., Jurgelucks, B., Walther, A., & Henning, B. (2020). Inverse piezoelectric material parameter characterization using a single disc-shaped specimen. Tm - Technisches Messen, 50–55. https://doi.org/10.1515/teme-2020-0012

The increasingly simulation-driven design process of ultrasonic transducers requires several reliable parameters for the description of the material behaviour. Exact results can only be achieved when a single specimen is used in the identification process, which typically is prone to the problem of low sensitivities to certain material parameters and thus high uncertainties. Therefore, a custom electrode topology for increased sensitivity is proposed for a piezoceramic disc. The thereupon conducted measurements of the electric impedance can be used as a starting point for an inverse approach where an equivalent simulation model is used to identify fitting material parameters. An optimisation strategy based on a preliminary sensitivity analysis is presented that leads to a good agreement between measurement and simulation. Furthermore, the proposed measurement procedure is able to evaluate the quality of the simulation model. Hence, different frequency-dependent damping models are presented and evaluated.


Poeplau, M., Ester, S., Henning, B., & Wagner, T. (2020). Recombination mechanisms of luminescence type gas sensors. Physical Chemistry Chemical Physics. https://doi.org/10.1039/d0cp02269a

<p>The impact of the recombination mechanisms in luminescent materials is discussed with regard to luminescence based gas-sensing applications and the use of semiconducting materials, as an alternative to organic–metal complexes, is outlined.</p>


Claes, L., Baumhögger, E., Rüther, T., Gierse, J., Tröster, T., & Henning, B. (2020). Reduction of systematic measurement deviation in acoustic absorption measurement systems. Fortschritte Der Akustik - DAGA 2020, 1077–1080.


Feldmann, N., Schulze, V., Jurgelucks, B., & Henning, B. (2020). Solving piezoelectric inverse problems using Algorithmic Differentiation. In Fortschritte der Akustik - DAGA 2020 (pp. 1125–1128).


Moritzer, E., Hüttner, M., Henning, B., & Webersen, M. (2020). The Influence of Hydrothermal Aging on the Material Properties of Continuous Fiber-Reinforced Thermoplastics and its Non-Destructive Characterization. In C. Hopmann & R. Dahlmann (Eds.), Advances in Polymer Processing 2020. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-662-60809-8_16


2019

Dreiling, D., Feldmann, N., & Henning, B. (2019). A DC bias approach to the characterisation of non-linear material parameters of piezoelectric ceramics. Presented at the 20. GMA/ITG-Fachtagung Sensoren und Messsysteme 2019, Nürnberg: AMA Service GmbH. https://doi.org/10.5162/sensoren2019/5.1.2


Feldmann, N., Jurgelucks, B., Claes, L., & Henning, B. (2019). A sensitivity-based optimisation procedure for the characterisation of piezoelectric discs. In 2019 International Congress on Ultrasonics. https://doi.org/10.1121/2.0001070


Claes, L., Hülskämper, L. M., Baumhögger, E., Feldmann, N., Chatwell, R. S., Vrabec, J., & Henning, B. (2019). Acoustic absorption measurement for the determination of the volume viscosity of pure fluids / Messverfahren für die akustischen Absorption zur Bestimmung der Volumenviskosität reiner Fluide. Tm - Technisches Messen, 2–6. https://doi.org/10.1515/teme-2019-0038


Webersen, M., Hüttner, M., Woitschek, F., Moritzer, E., & Henning, B. (2019). Akustische Charakterisierung der mechanischen Eigenschaften künstlich gealterter Polymere. In Deutsche Gesellschaft für Akustik e.V. (DEGA) (Ed.), Fortschritte der Akustik - DAGA 2019. Rostock.


Lugovtsova, Y., Johannesmann, S., Henning, B., & Prager, J. (2019). Analysis of Lamb wave mode repulsion and its implications to the characterisation of adhesive bonding strength. In 2019 International Congress on Ultrasonics. Bruges: Acoustical Society of America. https://doi.org/10.1121/2.0001074


Jurgelucks, B., Schulze, V., Feldmann, N., & Claes, L. (2019). Arbitrary sensitivity for inverse problems in piezoelectricity. GAMM Annual Meeting, Wien.


Johannesmann, S., Webersen, M., Düchting, J., Claes, L., & Henning, B. (2019). Characterization of the linear-acoustic material behavior of fiber-reinforced composites using lamb waves. In 45th Annual Review of Progress in Quantitative Nondestructive Evaluation (Vol. 38). Burlington. https://doi.org/10.1063/1.5099742


Hetkämper, T., Claes, L., & Henning, B. (2019). Evolutionary algorithm for the design of passive electric matching networks for ultrasonic transducers. In 2019 International Congress on Ultrasonics. Bruges. https://doi.org/10.1121/2.0001110


Thiel, C., Steidl, C., & Henning, B. (2019). P2.9 Comparison of deep feature extraction techniques for varying-length time series from an industrial piercing press. In AMA Service GmbH (Ed.), 20. GMA/ITG-Fachtagung. Sensoren und Messsysteme 2019. Von-Münchhausen-Str. 49, 31515 Wunstorf. https://doi.org/10.5162/SENSOREN2019/P2.9

The continuous refinement of sensor technologies enables the manufacturing industry to capture increasing amounts of data during the production process. As processes take time to complete, sensors register large amounts of time-series-like data for each product. In order to make this data usable, a feature extraction is mandatory. In this work, we discuss and evaluate different network architectures, input pre-processing and cost functions regarding, among other aspects, their suitability for time series of different lengths.


Claes, L., Johannesmann, S., Baumhögger, E., & Henning, B. (2019). Quantification of frequency-dependent absorption phenomena. In 2019 International Congress on Ultrasonics. Bruges. https://doi.org/10.1121/2.0001043


Johannesmann, S., Springer, D., Thiel, C., & Henning, B. (2019). Störeffektunterdrückung in 2D-Messdaten mittels DiscoGAN. In D. Gesellschaft für Akustik e.V. (Ed.), Fortschritte der Akustik - DAGA 2019 (Vol. 45, pp. 1055–1058). Rostock: Deutsche Gesellschaft für Akustik.


2018

Johannesmann, S., Brockschmidt, T., Rump, F., Webersen, M., Claes, L., & Henning, B. (2018). Acoustic material characterization of prestressed, plate-shaped specimens. In Sensoren und Messsysteme (pp. 231–234). VDE Verlag GmbH.


Claes, L., Zeipert, H., Koppa, P., Tröster, T., & Henning, B. (2018). Additiv gefertigte, akustische Diffusor-Strukturen für Ultraschallanwendungen. Workshop “Messtechnische Anwendungen von Ultraschall”, Drübeck.


Webersen, M., Johannesmann, S., Düchting, J., Claes, L., & Henning, B. (2018). Akustische Charakterisierung der richtungsabhängigen elastischen Eigenschaften faserverstärkter Kunststoffe. In Fortschritte der Akustik - DAGA 2018 (pp. 1263–1266).


Johannesmann, S., Düchting, J., Webersen, M., Claes, L., & Henning, B. (2018). An acoustic waveguide-based approach to the complete characterisation of linear elastic, orthotropic material behaviour. Tm - Technisches Messen, 2018(85), 478–486. https://doi.org/10.1515/teme-2017-0132


Feldmann, N., Jurgelucks, B., Claes, L., Schulze, V., Henning, B., & Walther, A. (2018). An inverse approach to the characterisation of material parameters of piezoelectric discs with triple-ring-electrodes. Tm - Technisches Messen, 86(2), 59–65. https://doi.org/10.1515/teme-2018-0066


Feldmann, N., & Henning, B. (2018). Efficient optimisation of initial values for characterising piezoelectric material parameters. In Fortschritte der Akustik (pp. 1275–1278). München.


Webersen, M., Johannesmann, S., Brockschmidt, T., Rump, F., Claes, L., & Henning, B. (2018). Einfluss mechanischer Vorspannung auf das mechanische Materialverhalten von Polymeren. Workshop “Messtechnische Anwendungen von Ultraschall”, Drübeck.


Thiel, C., Feldmann, N., & Henning, B. (2018). Extraction of Interpretable Features from Temporal Measurements using Approximate Prototypes. In Sensoren und Messsysteme 2018 (pp. 536–539). VDE Verlag GmbH.


Webersen, M., Johannesmann, S., Düchting, J., Claes, L., & Henning, B. (2018). Guided ultrasonic waves for determining effective orthotropic material parameters of continuous-fiber reinforced thermoplastic plates. Ultrasonics, 84, 53–62. https://doi.org/10.1016/j.ultras.2017.10.005


Claes, L., Feldmann, N., & Henning, B. (2018). Materialparameter von bleihaltigen und bleifreien Piezokeramiken und ihre Bedeutung in der Anwendung. PI Ceramic Akademie, Lederhose.


Jurgelucks, B., Claes, L., Walther, A., & Henning, B. (2018). Optimization of triple-ring electrodes on piezoceramic transducers using algorithmic differentiation. Optimization Methods and Software, 1–21. https://doi.org/10.1080/10556788.2018.1435652


Feldmann, N., Jurgelucks, B., Claes, L., & Henning, B. (2018). Vollständige Charakterisierung von piezoelektrischen Scheiben mit Ringelektroden. Workshop “Messtechnische Anwendungen von Ultraschall”, Drübeck.


2017

Claes, L., Chatwell, R. S., Vrabec, J., & Henning, B. (2017). A Spectral Approach to Acoustic Absorption Measurement. In PROCEEDINGS -- AMA Conferences 2017 (pp. 304–309). AMA Service GmbH. https://doi.org/10.5162/sensor2017/C1.2


Claes, L., Jäger, A., Johannesmann, S., Webersen, M., Kupnik, M., & Henning, B. (2017). Acoustic Material Characterization of Additively Manufactured Components. In PROCEEDINGS -- AMA Conferences 2017 (pp. 605–610). AMA Service GmbH. https://doi.org/10.5162/sensor2017/P2.9


Claes, L., Zeipert, H., Koppa, P., Tröster, T., & Henning, B. (2017). Additively manufactured acoustic diffuser structures for ultrasonic measurement applications. In Proceedings of Meetings on Acoustics (p. 030004). Honolulu. https://doi.org/10.1121/2.0000688


Feldmann, N., Bause, F., & Henning, B. (2017). Determining fractional Zener model parameters from low frequency DMA measurements. In Proceedings – AMA Conferences 2017. Nürnberg. https://doi.org/10.5162/SENSOR2017/B1.4


Olfert, S., Becker, S., & Henning, B. (2017). Erweiterung des Mason-Modells zur Beschreibung eines Partikelbelags auf einer Quarzscheibe. In Deutsche Gesellschaft für Akustik e.V. 2017- Fortschritte der Akustik - DAGA 2017 (pp. 1015–1018). Berlin: Deutsche Gesellschaft für Akustik e.V. (DEGA).


Jäger, A., Johannesmann, S., Claes, L., Webersen, M., Henning, B., & Kupnik, M. (2017). Evaluating the Influence of 3D-Printing Parameters on Acoustic Material Properties. In 2017 IEEE IUS~Proceedings.


Johannesmann, S., Claes, L., Webersen, M., & Henning, B. (2017). Inverser Ansatz zur akustischen Charakterisierung plattenförmiger Materialproben. In Fortschritte der Akustik - DAGA 2017 (pp. 999–1002). Deutsche Gesellschaft für Akustik e.V. 2017.


Jurgelucks, B., Feldmann, N., Claes, L., Henning, B., & Walther, A. (2017). Material parameter determination of a piezoelectric disc with triple-ring-electrodes for increased sensitivity. In Proceedings of Meetings on Acoustics (p. 030010). Honolulu. https://doi.org/10.1121/2.0000707


Claes, L., Feldmann, N., & Henning, B. (2017). Spektrale Verfahren zur Bestimmung der akustischen Absorption in fluiden Medien. Workshop “Schallfeldbasierte Messverfahren”, Drübeck.


Webersen, M., & Henning, B. (2017). Ultraschallbasierte Charakterisierung des Alterungsverhaltens von Polymeren.


Bause, F., Claes, L., Webersen, M., & Henning, B. (2017). Ultrasonic measurements in the characterization of viscoelasticity and aging of polymers. In PROCEEDINGS -- AMA Conferences 2017 (p. 414). https://doi.org/10.5162/sensor2017/C8.1


Bause, F., Claes, L., Webersen, M., Johannesmann, S., & Henning, B. (2017). Viskoelastizität und Anisotropie von Kunststoffen: Ultraschallbasierte Methoden zur Materialparameterbestimmung. Tm - Technisches Messen, 84(3). https://doi.org/10.1515/teme-2016-0056


2016

Ester, S., Struschka, M., & Henning, B. (2016). 3.2.3 - Direktgravimetrischer Partikelmasse-Sensor zur quasikontinuierlichen Emissionsmessung. LibreCat University. https://doi.org/10.5162/SENSOREN2016/3.2.3


Bause, F., & Henning, B. (2016). 5.3.1 - Ein ultraschallbasiertes inverses Messverfahren zur Charakterisierung viskoelastischer Materialparameter von Polymeren. LibreCat University. https://doi.org/10.5162/SENSOREN2016/5.3.1


Moritzer, E., Hüttner, M., Henning, B., & Webersen, M. (2016). An Approach to Non-Destructive Testing of Aged Polymers. In The Polymer Processing Society (Ed.). Presented at the 32nd International Conference of the Polymer Processing Society, Lyon.


Olfert, S., & Henning, B. (20AD). Anwendungsm\"oglichkeiten der Schallfeldvisualisierung in der Ultraschallmesstechnik. LibreCat University.


Webersen, M., Johannesmann, S., Claes, L., & Henning, B. (2016). Characterization of Continuous-fiber Reinforced Thermoplastics Using Thermoacoustically Excited Ultrasonic Lamb Waves. In 2016 IEEE IUS~Proceedings.


Moritzer, E., Hüttner, M., Henning, B., & Webersen, M. (2016). Detecting Molecular Damage. Kunststoffe International, (4), 43–45.


Claes, L., Meyer, T., Bause, F., Rautenberg, J., & Henning, B. (2016). Determination of the material properties of polymers using laser-generated broadband ultrasound. Journal of Sensors and Sensor Systems, 5(1), 187–196. https://doi.org/10.5194/jsss-5-187-2016


Bause, F. (2016). Ein ultraschallbasiertes inverses Messverfahren zur Charakterisierung viskoelastischer Materialparameter von Polymeren. Universität Paderborn.


Olfert, S., & Henning, B. (2016). Erweiterung des Raman-Nath-Modells zur Analyse von Schlierenabbildungen. Technisches Messen, 83(4), 219–224.


Feldmann, N., Bause, F., & Henning, B. (2016). GUM-konforme Unsicherheitsabschätzung bei inversen Problemen am Beispiel akustischer Transmissionsmessungen.


Jurgelucks, B., & Claes, L. (2016). Increasing the Sensitivity of Impedance with Respect to Material Parameters of Triple-Ring Electrode Piezoelectric Transducers using Algorithmic Differentiation. Workshop on Direct and Inverse Problems in Piezoelectricity, Erlangen.


Fischer, B., & Claes, L. (2016). Miniaturized all-optical Sound Pressure Sensor. In INTER-NOISE 2016. Deutsche Gesellschaft für Akustik e.V.


Moritzer, E., Hüttner, M., Henning, B., & Webersen, M. (2016). Molekularen Schäden auf der Spur. Kunststoffe, (4), 94–96.


Moritzer, E., Hüttner, M., Henning, B., & Webersen, M. (2016). Non-destructive characterization of hygrothermally aged polymers. In Society of Plastics Engineers (Ed.). Presented at the ANTEC 2016, Indianapolis.


Jurgelucks, B., & Claes, L. (2016). Optimisation of triple-ring-electrodes on piezoceramic transducers using algorithmic differentiation. In AD2016 The 7th International Conference on Algorithmic Differentiation (pp. 99–102). Christ Church, Oxford, United Kingdom.


Moritzer, E., Hüttner, M., Henning, B., & Webersen, M. (2016). Ultraschallbasierte Charakterisierung von gealterten Polymeren. In Institut für Wissenschaftliche Veröffentlichungen (Ed.), Jahresmagazin Kunststofftechnik 2016 (pp. 2–7).


Bause, F., Rautenberg, J., Feldmann, N., Webersen, M., Claes, L., Gravenkamp, H., & Henning, B. (2016). Ultrasonic transmission measurements in the characterization of viscoelasticity utilizing polymeric waveguides. Measurement Science and Technology, 27(10). https://doi.org/10.1088/0957-0233/27/10/105601


Feldmann, N., Bause, F., & Henning, B. (2016). Uncertainty estimation for linearised inverse problems comparing Bayesian inference and a pseudoinverse approach for acoustic transmission measurements. Tm - Technisches Messen, 84(4). https://doi.org/10.1515/teme-2016-0022


Feldmann, N., Bause, F., & Henning, B. (2016). Vergleich zweier Verfahren der Unsicherheitsabschätzung bei linearisierten inversen Problemen mittels Bayes’scher Inferenz und Pseudoinverse am Beispiel akustischer Transmissionsmessung. In Sensoren und Messsysteme 2016. Nürnberg. https://doi.org/10.5162/SENSOREN2016/6.3.2


Webersen, M., Hüttner, M., Bause, F., Moritzer, E., & Henning, B. (2016). Zerstörungsfreie Charakterisierung des hydrothermischen Alterungsverhaltens von Polymeren. In AMA Service GmbH (Ed.) (pp. 683–688). Presented at the 18. GMA/ITG-Fachtagung Sensoren und Messsysteme 2016, Nürnberg. https://doi.org/10.5162/sensoren2016/P6.4

In der zerstörungsfreien Werkstoffprüfung sind bereits zahlreiche Verfahren etabliert, deren Ziel die Detektion makroskopischer Defekt- und Fehlstellen (z.B. Risse, Poren, Fremdeinschlüsse) ist. Insbesondere bei Polymerwerkstoffen muss jedoch auch die Materialalterung auf molekularer Ebene berücksichtigt werden, die sich (zumeist negativ) auf die Materialkenngrößen auswirkt. Gängige Verfahren zur Bestimmung dieser Kenngrößen arbeiten jedoch üblicherweise zerstörend und sind somit beispielsweise für die vorbeugende Instandhaltung oder die Online-Komponentenüberwachung nur eingeschränkt geeignet. In diesem Beitrag wird ein Verfahren zur zerstörungsfreien Charakterisierung des Alterungszustandes von Polymeren vorgestellt. Dazu wird der Zusammenhang zwischen akustisch (zerstörungsfrei, mittels Ultraschall-Transmissionsmessung) bestimmten Kenngrößen und klassisch (zerstörend, z.B. mittels Zugprüfung) bestimmten hydrothermischer Alterung auf das Material Polyamid 6 (PA6) untersucht. Die Ergebnisse Kenngrößen betrachtet. Exemplarisch werden die Auswirkungen zeigen einen engen Zusammenhang zwischen der zerstörend bestimmten Viskositätszahl, die ein Maß für die mittlere Molekülkettenlänge darstellt, und der akustischen Longitudinalwellengeschwindigkeit. Das Molekülkettenabbau (Depolymerisation) bestimmt ist, kann somit auch akustisch und zerstörungsfrei charakterisiert werden. Auf dieser Basis können neuartige, zerstörungsfrei arbeitende Messsysteme entwickelt werden.


2015

Olfert, S., & Henning, B. (15AD). Analyse integral erfasster rotationssymmetrischer Schallwechseldruckverteilungen in Schlierenabbildungen.


Olfert, S., & Henning, B. (2015). Analyse integral erfasster Schallwechseldruckverteilungen in Schlierenabbildungen. In XXIX Messtechnisches Symposium. Berlin, München, Boston. https://doi.org/10.1515/9783110408539-010


Webersen, M., Bause, F., & Henning, B. (2015). Application of Automatic Differentiation for the inverse parameter identification of complex-valued forward models.


Claes, L., Bause, F., Rautenberg, J., & Henning, B. (2015). Detection of ultrasonic plate waves using ceramic strip transducers. In Proceedings SENSOR 2015 (pp. 775–779). https://doi.org/10.5162/sensor2015/P3.3


Webersen, M., Bause, F., Rautenberg, J., & Henning, B. (2015). Identification of temperature-dependent model parameters of ultrasonic piezo-composite transducers. In AMA Service GmbH (Ed.), AMA Conferences 2015 (pp. 195–200). Nürnberg.

When performing measurements, the effects of the measurement system itself on the measured data generally must be eliminated. Consequently, those effects, i.e. the system’s dynamic behavior, need to be known. For the piezo-composite transducers in an ultrasonic transmission line, a model based approach is used to describe their dynamic behavior and take into account its dependence on the environment temperature and the acoustic impedance of the target medium. Temperature-dependent model parameters are presented, which are obtained by performing a multiplepart identification process on the transducer model, based on electrical impedance measurements [1]. The identification process uses an inverse approach for optimizing a subset of the model parameters. Additionally, algorithmic differentiation methods are used to determine accurate derivatives. In a final optimization step, impedance measurements taken at different temperatures are used to determine the temperature dependencies of the model parameters. These can then be used to assess the plausibility of the identification results. Additionally, the parameters can be expressed as polynomials in the temperature to take different operating conditions into account.


Webersen, M., Karzellek, M., Bause, F., & Henning, B. (2015). Implementation and uncertainty analysis of a test device for electrical impedance measurements using vector network analyzers.


Kulshreshtha, K., Jurgelucks, B., Bause, F., Rautenberg, J., & Unverzagt, C. (2015). Increasing the sensitivity of electrical impedance to piezoelectric material parameters with non-uniform electrical excitation. Journal of Sensors and Sensor Systems, 4, 217–227.


Bause, F., Gravenkamp, H., Rautenberg, J., & Henning, B. (2015). Model based sensitivity analysis in the determination of viscoelastic material properties using transmission measurements through circular waveguides (pp. 204–207).

Several ultrasonic approaches for material determination are formulated in terms of an (nonlinear) inverse problem, e.g. immersion technique (Castaings et al. (2000)) or plate-waveguide techniques (Marzani et al. (2012)). In this contribution we focus on cylindrical waveguides for ultrasonic material determination and especially on the sensitivity of recorded transmission signals to the material properties. We utilize composite scaled sensitivities to determine the information content that can be achieved by the setup to certain parameters and discuss the limitations of the approach.


Kulshreshtha, K., Jurgelucks, B., Bause, F., Rautenberg, J., & Unverzagt, C. (n.d.). On the optimal configuration of triple-ring-electrodes on piezoceramic transducers towards increased parameter sensitivity of impedance.


Jurgelucks, B., Kulshreshtha, K., Bause, F., Rautenberg, J., & Unverzagt, C. (n.d.). On the optimal configuration of triple-ring-electrodes on piezoceramic transducers towards increased parameter sensitivity of impedance.


Olfert, S., & Henning, B. (2015). Schallfeldcharakterisierung mittels Schlierentechnik (pp. 1560–1561). Berlin: DEGA and {Deutsche Gesellschaft f{\"u}r Akustik e.V}.


Bause, F., Gravenkamp, H., Rautenberg, J., & Henning, B. (2015). Transient modeling of ultrasonic guided waves in circular viscoelastic waveguides for inverse material characterization. Measurement Science and Technology, 26(095602 (17pp)). https://doi.org/10.1088/0957-0233/26/9/095602

In this contribution, we present an efficient approach for the transient and time-causal modeling of guided waves in viscoelastic cylindrical waveguides in the context of ultrasonic material characterization. We use the scaled boundary finite element method (SBFEM) for efficient computation of the phase velocity dispersion. Regarding the viscoelastic behavior of the materials under consideration, we propose a decomposition approach that considers the real-valued frequency dependence of the (visco-)elastic moduli and, separately, of their attenuation. The modal expansion approach is utilized to take the transmitting and receiving transducers into account and to propagate the excited waveguide modes through a waveguide of finite length. The effectiveness of the proposed simulation model is shown by comparison with a standard transient FEM simulation as well as simulation results based on the exact solution of the complex-valued viscoelastic guided wave problem. Two material models are discussed, namely the fractional Zener model and the anti-Zener model; we re-interpret the latter in terms of the Rayleigh damping model. Measurements are taken on a polypropylene sample and the proposed transient simulation model is used for inverse material characterization. The extracted material properties may then be used in computer-aided design of ultrasonic systems.


Bause, F., Gravenkamp, H., Rautenberg, J., & Henning, B. (2015). Transient modeling of ultrasonic guided waves in circular viscoelastic waveguides for inverse material characterization. Measurement Science and Technology. https://doi.org/10.1088/0957-0233/26/9/095602


Rautenberg, J., Bause, F., & Henning, B. (2015). Utilizing guided acoustic waves to measure dispersive material properties of polymers. In A. Service GmbH} (Ed.), AMA~Conferences 2015 (pp. 130–135).

This contribution will give a short introduction to the most important mechanic and acoustic parameters that are necessary to model and simulate frequency dependent sound propagation (dispersion) in isotropic but linear viscoelastic materials. Furthermore, several experimental techniques to measure these parameters will be discussed, like the dynamic-mechanical analysis and transient ultrasonic techniques. Finally it will be shown how to use the determined material parameters for the simulation of transient signals in a highly attenuative acoustic waveguide.


Liste im Research Information System öffnen

Die Universität der Informationsgesellschaft