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Abstract: Machines are omnipresent. They produce, they transport. Machines facilitate work and assist. The 
increasing penetration of mechanical engineering by information technology enables considerable benefits. 
This circumstance is expressed by the term mechatronics, which means the close interaction of mechanics, 
electronics, control engineering and software engineering to improve the behavior of a technical system. The 
conceivable development of information technology will enable mechatronic systems with partial intelli-
gence. We refer to this by using the term “self-optimization”. Self-optimizing systems react autonomously 
and flexibly on changing environmental conditions. They have to learn and optimize their behavior during 
operation. Hence, the design of such systems is an interdisciplinary task. Mechanical, electrical, control and 
software engineers are involved as well as experts from mathematical optimization and artificial intelligence. 
Furthermore, self-optimizing systems adopt functions, which come with the territory of cognitive systems 
and are known as cognitive functions. In order to design self-optimizing systems, we have to consider aspects 
of the paradigm of cognition, too. Even though in the last years more and more theories of modeling cogni-
tive behavior in technical systems were developed and published, an applicable support of the system devel-
oper, especially in the early stages of the development process, is missing. Already the identification of self-
optimization and appropriate systems functions is a challenge for the system designer. This contribution 
presents an approach to design cognitive functions in mechatronic systems and provides a subsystem of an 
innovative railway technology as a concrete example to demonstrate how the development of future mecha-
tronic systems can profit from such an approach. This subsystem is a hybrid energy storage system (HES), 
consisting of a NiMH-battery and a double layer capacitor (DLC) and managed by a self-optimization operat-
ing strategy.    
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I INTRODUCTION 

The products of mechanical engineering and re-
lated industrial sectors, such as the automobile indus-
try, are often based on the close interaction of me-
chanics, electronics and software engineering, which 
is aptly expressed by the term mechatronics. The aim 
of mechatronics is to improve the behavior of tech-
nical systems by using sensors to obtain information 
about the system environment and the system itself. 
The processing of this information enables the sys-
tem to react optimally to its current situation. The 
conceivable development of communication and in-
formation technology opens up more and more fasci-
nating perspectives, which move far beyond current 
standards of mechatronics: mechatronic systems hav-
ing an inherent partial intelligence. Therefor we use 
the term “self-optimization”. Self-optimization 
enables mechanical engineering systems that have 
the ability to react autonomously and flexibly on 

changing operation conditions. Self-optimization 
takes place as a process of the three actions “analyz-
ing the current situation”, “determining the system’s 
objectives” and “adapting the system’s behavior”. 
We refer to this series of actions as the “Self-
Optimization Process”.     

During the self-optimization process functions for 
self-optimization such as “to share knowledge”, “to 
coordinate behavior” or “to learn from experience” 
have to be implemented. Those functions are also 
typical for cognitive systems and are known as cog-
nitive functions. It is easy to see that a technical sys-
tem, that realizes cognitive functions to use informa-
tion, for instance, about its surroundings and itself in 
order to adjust its own behavior, is distinctly more 
viable and robust in operation than conventional 
reactive controlled systems.  

The design of such systems, however, is a chal-
lenge. Established design methodologies of conven-
tional mechanical engineering [1] and also metho-
dologies of mechatronics [2] are no longer adequate 
to that task. Within the Collaborative Research Cen-
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tre (CRC) 614 “Self-Optimizing Concepts and Struc-
tures in Mechanical Engineering” at the University of 
Paderborn, a new design methodology is developed. 
It facilitates engineers from different domains to de-
scribe systems in a comprehensive domain-spanning 
way and enables the reuse of proven solutions in the 
form of solution patterns [3]. We distinguish between 
solution patterns, which relay on physical effects, and 
patterns, which serve data processing. However, 
there are no solution patterns, which consider the 
paradigm of self-optimization or cognitive functions. 
Thus “Active Patterns for Self-Optimization” (APSO) 
were devised to indicate potential solutions for self-
optimization information processing [4], [5]. 

This paper is organized as follows: In section 2 
we will present the general concept of self-
optimization and point out the connections to the pa-
radigm of cognition. We will then focus on the de-
velopment of self-optimizing systems, providing me-
thods and techniques to rise to the challenge. Accord-
ing to the methods presented in section 3, we will 
demonstrate how they should be used by given a 
brief overview of the development of an innovative 
energy storage system. Eventually we will give a 
short summary of our contribution. 

II SELF-OPTIMIZING SYSTEMS AND 
COGNITIVE FUNCTIONS 

A. Self-Optimization 
The key aspects and the mode of operation of a 

self-optimizing system are illustrated in Figure 1. 

 

Figure 1: Aspects of a self-optimizing system 

 The self-optimizing system determines its cur-
rently active objective on the basis of the encoun-
tered influences. This means, for instance, new ob-
jectives are added or existing objectives are discarded 

and no longer pursued during operation. Adapting the 
objectives in this way leads to an adjustment of the 
system behavior. This is achieved by adapting the 
parameters or, if necessary, the structure of the sys-
tem (e.g. switching between different controller 
types). The term parameter adaptation means adapt-
ing a system parameter, for instance, changing a con-
trol parameter. Structure adaptations affect the ar-
rangement of the system elements and thus their rela-
tionships. 

The Self-Optimization within the system takes 
place as a series of the three following actions to 
which we refer as Self-Optimization Process [6]: 

1. Analyzing the current situation: The current 
situation includes the current state of the system 
as well as all observations of the environment that 
have been carried out. 

2. Determining the system’s behavior: The current 
system’s objectives can be extracted from selec-
tion, adaptation and generation. 

3. Adapting the system’s behavior: The changed 
system of objectives demands an adaptation of 
the behavior of the system. This can be realized 
by adapting the parameters and/or by adapting the 
structure of the system.   

The self-optimization process leads, according to 
changing influences, to a new state. Thus, a state 
transition takes place. The self-optimization process 
describes the system’s intelligent behavior. 

The necessity to divide the architecture of infor-
mation processing of complex systems into several 
hierarchical levels is also well-grounded in cognitive 
science. Whereas technical systems basically only 
have one reactive action-level (the mechatronic con-
trol loop), research in cognitive science tries to prove 
that complex systems possess not only a reactive be-
havior, but also can modify the coupling between 
detecting data and carrying out an action. This mod-
ification can be considered as learning. For the me-
chatronic control loop, which is the motor loop in 
Figure 2, means this that the direct data processing 
between sensors and actuators needs to be extended. 
Conventional control strategies are not sufficient 
enough. Furthermore, cognitive information 
processing must not replace the direct and reactive 
coupling, but has to co-exist with it [7]. To meet 
these requirements, the concept of the Operator-
Controller-Module (OCM) was developed (Fig. 2) 
[6]. 
 From an information point of view the OCM is 
conform to a software agent and composed of follow-
ing three levels: 

• Controller: On this level the access through the 
technical systems takes place. Since this control 
loop is an active chain that obtains measurement 
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signals, determines adjustment signals and out-
puts them, it is called “motor loop”.  

• Reflective Operator: This level monitors and 
directs the controller by provided “controller 
configurations”. Those can be combinations of 
control units, switch elements or signal flows. 
The exchange between controller and reflective 
operator takes place in the “reflective loop”.  

• Cognitive Operator: At the highest level of the 
OCM, the system can launch a variety of me-
thods and algorithms to use information about 
the environment and itself to improve its own 
behavior. In order to realize cognitive functions, 
at least a knowledge base must be implemented. 
The other entities of the cognitive operator de-
pend on the design requirements. The informa-
tion flow between cognitive and reflective oper-
ator is called “cognitive loop”. 

 

Figure 2: Concept and realization of the Operator-
Controller-Module for the hybrid energy storage sys-

tem (cp. ch. IV) 

B. Cognitive Functions 
Self-optimizing systems additionally to conven-

tional mechatronic systems perform functions such as 
“to communicate”, “to share knowledge”, “to extract 
information”, “to determine objectives”, or “to 
change controller structures”. Several combinations 
of these functions constitute self-optimization 
processes. Many of those functions for running self-
optimization come with the territory of cognitive sys-
tems, therefore known as cognitive functions [7], [8]. 

There are many appellations and classifications of 
cognitive functions within the field of cognitive 
science [9]. STRUBE, for instance, distinguishes “to 
observe”, “to recognize”, “to map”, “to memorize”, 
“to think,” “to solve problem”, “to control motor” 
and “to use language” [10]. This classification serves 
only as a very abstract, first order of cognitive func-
tion. An explicit classification of cognitive functions 
regarding technical functions is still missing. 

Whereas self-optimizing systems feature only a 
certain number and combination of these functions to 
adapt ideally to their changing environment, cogni-
tive systems are provided with the whole variety of 
cognitive functions in order to achieve their objec-
tives even under circumstances which were ignored 
during their system design. Hence, cognition can be 
characterized as the ability that enables not only au-
tonomous and adapting, but also more reliable, effec-
tive and viable systems regarding their purpose [11]. 
As a consequence we have to consider aspects of the 
paradigm of cognition in order to design self-
optimizing systems. 

 As it is easy to see, we can range the mentioned 
cognitive functions into the three phases of our self- 
optimization process. Table 1 shows a classification 
of cognitive functions for self-optimizing systems on 
a rather abstract level. This classification can be the 
starting point for a further detailed classification in 
order to use those functions for the design of technic-
al systems. 

Actions of self-
optimization Cognitive functions 

  

Analyzing the situa-
tion 

“to observe”, “to recog-
nize”, “to map” 

Determining the 
system’s behavior 

“to memorize”, “to think,” 
“to solve problem” 

Adapting the sys-
tem’s behavior 

“to control motor”, “to use 
language” 

Table 1: Classification of cognitive functions regard-
ing self-optimization 

III DEVELOPMENT OF COGNITIVE 
FUNCTIONS 

Existing methodologies for the development of 
technical systems need to be fundamentally extended 
and added by domain-spanning methods and tools to 
handle the complexity of the development, in particu-
lar during the early stages of the development. There 
are three basic elements of our new methodology: a 
procedure model for the complete development 
process, the domain-spanning specification technique 
for the holistic description of the system to develop 
and a new type of solution pattern for the effective 
reuse of our methods by thirds.  
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A. Design Process 
On the highest degree of abstraction, the devel-

opment process of self-optimizing mechatronic sys-
tems can be subdivided into two serial processes: the 
domain-spanning conceptual design and the domain-
specific “concretization” (see Fig. 3). Within the 
conceptual design, the basic structure and the opera-
tion modes of the system are defined. It starts with 
planning and clarifying the development task. An 
interdisciplinary team, consisting of specialists of 
different domains, creates the so-called principle so-
lution of the system to develop. It describes not only 
the main physical characteristics of the system, but 
also the logical operating characteristics. In order to 
handle the complexity a decomposition of the system 
into modules will take place during the conceptual 
phase.  

Based upon the principle solution the subsequent 
domain-specific “concretization” is planned and rea-
lized. The term “concretization” describes the do-
main-specific design of a technical system, based on 
the domain-spanning principle solution. The aim of 
the concretization is the complete description of the 
system by using the construction structure and the 
component structure. Thus, all modules are devel-
oped in parallel in all participating domains. An 
overall system model, which is based on the principle 
solution, guarantees the effective and correct integra-
tion to complete the system design. 

 
Figure 3: Development of self-optimizing mechatron-

ic systems [12] 

B. Specification Technique 
Within the conceptual design phase, we use a 

semi-formal, domain-spanning specification tech-
nique to describe the principle solution of a self-
optimizing system. The principle solution represents 
a significant milestone since it is the result of the 
conceptual design phase. The specification technique 
was developed within the CRC 614 and is based on 
the research of FRANK, GAUSEMEIER and KALL-
MEYER [13], [14]. At the beginning of the develop-
ment of a holistic specification technique for the de-
scription of the principle solution of mechatronic and 
self-optimizing systems, it became apparent that such 
a description needs to be divided into aspects. The 
following aspects need to be taken into account: re-
quirements, environment, application scenarios, func-

tions, active structure, system of objectives, shape 
and behavior (see Fig. 4).  

 
Figure 4: Coherent system of partial models 

The mentioned aspects are captured in the prin-
ciple solution and described by partial models. The 
partial models are intertwined and form a coherent 
system model. The relations are modeled between the 
constructs of the relating partial models and amount 
to a coherent system. By using this specification 
technique, the system that is to be developed will be 
described in a holistic, domain-spanning way. The 
specification of the principle solution provides all 
relevant information for the structuring of the system 
and forms the basis for the communication and coop-
eration of the developers from different domains.  

C. Solution Patterns 
One leading point of the design methodology is 

the reuse of proven solution in form of patterns. Gen-
erally a pattern describes a recurring problem in our 
surrounding and the core of a solution to that prob-
lem [3]. The solution core is specified in a “solution 
pattern” that defines the characteristics of the sys-
tem’s elements that is to be developed and the inter-
actions between those elements. We distinguish be-
tween solution patterns, which relay on physical ef-
fects, and patterns, which serve information process-
ing. However, there are no solution patterns, which 
consider the paradigm of self-optimization not to 
mention cognitive functions. For this purpose “Ac-
tive Patterns for Self-Optimization” (APSO) were de-
vised. According to a domain-spanning description 
an APSO requires several aspects which can be mod-
eled with the presented specification technique (see 
Fig. 5). 
 The aspect functions lists and describes the func-
tions for self-optimization, which are implemented 
by the APSO. This aspect is essential to modify and 
complete the present system’s functions. We think it 
is a suitable and elegant way to integrate cognitive 
functions in the system design.   
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The principle concept characterizes the underly-
ing ideas behind the APSO. It enables developers to 
acquire an intuitive understanding of the APSO with-
out any further formal details.  

The aspect structure describes which system 
elements are fundamentally necessary in order to 
implement the APSO and how those system elements 
are interrelated.  

The aspect behavior describes the self-
optimization process. Thus, we need to model the 
autonomous, cognitive behavior that initiates, sup-
ports and/or effects state transitions. The behavior 
aspect is split in two sub aspects. According to the 
corresponding partial model these sub aspects are 
behavior – state and behavior – activity. The aspect 
behavior – state models possible sequences of states 
and state transitions realized by the system’s func-
tions. The aspect behavior – activity aspect describes 
the activities that are performed by system elements 
during a certain point within the self-optimization 
process. 

Methods serve to implement the self-
optimization processes, in particular to adapt objec-
tives and behaviors (as a result of adaptations to pa-
rameters and possibly also structures). The aspect 
methods is a set or catalogue of methods which can 
be used to implement the self-optimization process 
during later on. Examples of such methods are fuzzy 
neural rule switching for adapting internal objectives, 
and case-based planning for experience-based beha-
vior adaptation.  

The aspect application scenario describes suc-
cessful established applications of APSO. An applica-
tion scenario encompasses the same aspects as the 
APSO. The aspects of application scenario are in-
stances or concretization of the aspects of the corres-
ponding APSO. 

 

Figure 5: Aspects of an active pattern for self-
optimization 

The digital representation of an aspect of an 
APSO in called a partial model. This means, that only 
if all aspects are implemented the respective partial 
models build the whole model of an APSO. The main 
challenge for the use of APSO is on the one hand to 

find methods and respective system elements for the 
big variety of cognitive functions, and on the other 
hand the fusion of the partial models of the APSO and 
the partial models of the current system design. The 
successful integration of eligible APSO results in an 
early specification of the information processing, 
which facilitates not only the work in the following 
concretization phase, but also the consistency of the 
system design. 

Once a self-optimization process has been speci-
fied and implemented successfully, the information 
needs to be documented in order to enable the reuse 
in different applications as well. This is necessary not 
only if the developer could not refer to an existing 
APSO (in this case a new APSO has to be described), 
but also if an APSO was implemented (in that case at 
least a new application scenario has to be described). 
Apparently it is necessary to use a database, which 
stores the information in such a manner, that devel-
opers are able to recognize appropriate APSO. There-
fore we developed a user-friendly knowledge base 
for the systematic management of APSO, called “Ac-
tive Pattern Knowledge Base”. The graphical user 
interface of the Active Pattern Knowledge Base is 
illustrated in Figure 6. 

 
Figure 6: GUI of the active pattern knowledge base 

The Active Pattern Knowledge Base links all the 
aspects of an active pattern to the respective partial 
models, which are specified in Microsoft Visio. 
However, the user can see a preview of the partial 
model. Furthermore, information regarding the vari-
ous methods is stored directly within the program. 
Both, the active pattern and the methods are stored as 
a list to enable a quick access. To find an appropriate 
active pattern, a fulltext search is available, which 
looks for matches between the search word and the 
notions used in the partial models. The interface to an 
ontology based search is also implemented. A pre-
liminary ontology for matching related technical 
functions supports the fulltext search. Search results 
are presented with a percentaged quality. 
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IV APPLICATION EXAMPLE: HYBRID 
ENERGY STORAGE SYSTEM (HES) 

Currently we are using the presented methods to 
design an intelligent hybrid energy storage system, 
which can optimize its modes of ooperation by itself 
according to different consumer loads and other sys-
tem surroundings. The system shall supply both train 
vehicles and motor vehicles. The project is part of an 
innovative railway prototype called “Neue Bahntech-
nik Paderborn/RailCab” [15]. RailCabs are autono-
mous vehicles that supply transport for both passen-
gers and cargo on demand without any stops or 
changes of train and reduce energy consumption by 
forming convoys. They feature a substantially higher 
riding comfort due to active damping of the coaches 
and active guidance. The vehicles are propelled by a 
doubly fed linear motor drive, which offers the pos-
sibility to build or clear convoys while driving due to 
a high and defined propulsive force. It is further 
possible to transfer energy by this linear motor drive, 
thus there is no catenary or conductor rail to supply 
the loads on board.  

Unfortunately, the power transfer is not possible 
under all driving conditions. An on-board energy 
storage backs up the supply of the vehicle. The main 
requirements are the ability to store a high amount of 
energy to offer long operation as well as to provide a 
high power while charging and discharging to cover 
all demands of the loads and to store the maximum 
transferred power of the linear motor drive. As the 
energy storage is installed on a vehicle, its mass and 
volume has to be small as well. Low costs, a high 
efficiency and a long life-span without maintenance 
are further requirements. 

To meet these requirements, we decided to com-
bine different energy storage devices with comple-
mentary characteristics into a hybrid energy storage 
system (HES), consisting of a NiMH-battery and a 
double layer capacitor (DLC) (Fig. 7) [16]. 

 

Figure 7: Principle concept of the hybrid energy sto-
rage system (HES) 

The HES combines long term storage – batteries 
– featuring high energy density with short term sto-
rage – double layer capacitors (DLC) – offering high 
power density and high cycliability.  

The structure of the hybrid energy storage sys-
tem offers a degree of freedom for the distribution of 
the power flow of the two storage devices. An energy 
management is necessary to benefit from this. This 
energy management should be able to react to vary-
ing influences from the surroundings of the vehicle 
and to adapt its behavior adequately. Depending on 
the situation different objectives may be important, 
e.g. a high efficiency, low deterioration or increased 
availability [17]. Operating strategies for the energy 
management can be realized by miscellaneous ways, 
e.g. by the limitation of battery power, often com-
bined with a velocity-dependent adaptation of the 
state of charge of the DLC [18], [19]. Though, such 
conventional strategies offer only adaptation by static 
rules; they neglect changes due to the system’s sur-
roundings. Therefore we systematically designed and 
implemented a complete self-optimization process in 
a test-rig including both continuous and discrete op-
timization methods for the HES. 

In order to realize self-optimization in the HES, 
the cognitive functions have to be identified from the 
described requirements. Additional functions, which 
result from a chosen part-solution, have to be added 
in order to specify the complete partial model “func-
tions”. Figure 8 shows a simplified cut-out of this 
final partial model of the HES, focusing on the cog-
nitive functions for the mechatronic control loop in 
respective to the presented classification from Table 
1.  

 

Figure 8: Cut-out of the partial model “functions” of 
the HES 

The pigmented functions are the main functions 
for the self-optimization process. They are broken 
down into sub-functions regarding possible system 
elements, which realize those functions that cannot 
be further detailed by a sub-function. The description 
and arrangement of the system elements defines the 
basic structure of the self-optimizing HES. Figure 9 
visualizes the simplified partial model “active struc-
ture” of the HES, consisting of those system ele-
ments.  
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Figure 9: Simplified partial model “active structure” 
of the HES 

There are logical groups (cognitive operator, ref-
lective operator, controller and energy storage struc-
ture), which specify the self-optimization information 
processing architecture (cp. operator-controller-
module Fig. 2). The “cognitive cooperator” of the 
HES consists of two different types of optimizer 
(continuous and discrete) and a database for the con-
tinuous optimizer. The “controller” is realized by 
current and voltage control loops for the HES. The 
“reflective operator” contains system elements for 
the monitoring and correction, but also a database 
with emergency strategies in order both optimizer 
fail. The “structure” of the HES consists of the two 
types of energy storage devices. Two bidirectional 
power converters control the power flows to/from the 
storage.  

For well known track sections travelled frequent-
ly, we chose to implement an offline “continuous 
multi-objective optimization”. For these frequently 
applied power profiles, according precalculated op-
timization results in terms of Pareto sets are retrieved 
from a database [16]. Since there is no guarantee that 
the required power profile of the HES is already 
stored, a second optimization was implemented, a 
“discrete optimization” for the online calculation of 
the operating strategy [20]. How the HES executes  
those optimizations is illustrated in Figure 10.     

 

Figure 10: Cut-out of the partial model “Behavior – 
activitiy” of the HES 

The activities (grey arrows) are system functions 
which are executed during operation. The depicted 
partial model “behavior-activity” shows only the 
second action of the self-optimization process, the 
determination of objectives. In the case a power pro-
file is in the database the continuous optimization 
starts; if not, the discrete optimization is performed 
(lower series of activities).   

In order to support the reuse of the specified and 
evaluated solution, we concretized two active pattern 
for self-optimization and stored them in the active 
pattern knowledge base (cp. Fig. 6): APSO “Multi-
Objective-Optimization”  based on the continuous 
optimization method and APSO ”Intelligent Preview” 
based on the discrete optimization method. Both ac-
tive patterns were applied successfully in other tech-
nical system [20]. 

V RÉSUMÉ 

We believe that self-optimizing systems are the 
mechatronic systems of tomorrow. In our contribu-
tion we introduce an approach to design cognitive 
functions in such systems. First we declared self-
optimization as a paradigm for innovative mecha-
tronic systems and looked into the complex field of 
cognitive functions. Accordingly we provided not 
only a generic procedure model, but also our hybrid 
energy storage system (HES) as an application ex-
ample to demonstrate the development of an intelli-
gent technical system. To guarantee the effective 
reuse of once successfully proven solutions for the 
design of cognitive functions in self-optimizing sys-
tems, we presented a new type of solution pattern 
called Active Pattern for Self-Optimization (APSO). 
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