

PIBRAC - Piezoelectrical Brake Actuator

Dr.-Ing. Norbert Fröhleke

EU-Projekt PIBRAC Plezoelectric BRake ACtuator

PIBRAC – Piezoelectric Brake Actator

- Motivation for actuator enabling direct drive braking
- Functional principle of multi-mass ultrasonic
- Power supply and control development

Dr.-Ing. Norbert Fröhleke,

Department of Power Electronics and Electrical Drives, University Paderborn, Germany

FRAMFWORK

PIBRAC Consortium

Current Aircraft Brake Actuator

Electromagnetic Brake

Advantages by "full electrical" aircraft:

- Reduction in volume and weight
- Increase in reliability and operating safety
- Reduction costs for operation and maintenance

- 1. Electric motor
- 2. Transmission
- 3. Bullet thread
- 4. Rotor disc from carbon
- 5. Stator disc from carbon

Power Supply Scheme and Control

Objectives:

UNIVERSITÄT PADERBORN Die Universität der Informationsgesellschaft

Development of power supply and control architecture for Piezo Brake Actuator with a multi mass ultrasonic motor (MM-USM)

Operating Principle of MM-USM

Operating Mode of MM-USM

Proposed Control Strategy for PIBRAC Motor

UNIVERSITÄT PADERBORN Die Universität der Informationsgesellschaft

PIBRAC Control Realisation

Prof. Dr.-Ing. Joachim Böcker, Dr.-Ing. Norbert Fröhleke

Actuator Design

Actuator Kinematic

	EMA			PIBRAC		
Component	Weight	Quality	Total weight	Weight	Quality	Total weight
Actuator	4kg	16	64Kg	2,1kg	16	33,6kg
Cable	100kg	1	100kg	126kg	1	126kg
Controller	10,5kg	4	42kg	10,5kg	4	42kg
Total			206kg			202kg

Load Variation for MM-USM

UNIVERSITÄT PADERBORN Die Universität der Informationsgesellschaft

Motor Modelling

UNIVERSITÄT PADERBORN Die Universität der Informationsgesellschaft

Simulation Results

Power Electronics and Control

Power Supply Structure

d) Maximal electrical power 1500W

Cable and Filter Components

MM-USM output power	550W	
		Г
Losses		
Dielectric losses	5W	
Deformation losses	347W	
Vibration losses	508W	
Total power supply losses	860W	
Required electrical power	1410W	
Efficiency	39,0%	

Voltage and Current Loop Control Scheme

Cascade Voltage and Current Control Scheme

Prototype Hardware Configuration

	EMA	PIBRAC					
Steady-State Section							
Converter efficiency	0	0					
Motor efficiency	+	-					
Mechanical efficiency	0	0					
Dynamic Section							
Inertia	-	+					
Ways of improvement section							
No lubricant	-	+					
Conclusion							
	???	???					

Thank you for your attention !

