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Abstract - A test track of 530 m length for linear motor driven 
railway vehicles in scale of 1:2.5 was built at the University of 
Paderborn in 2002. A doubly-fed long stator linear motor does 
not only drive the vehicles, but offers the opportunity of a 
contactless energy transmission into the vehicle’s on-board 
supply system, too. In this pape, the motion control structure is 
presented comprising an operating point assignment of the 
linear motor optimized by a multiobjective optimization method. 
 
 

I. INTRODUCTION 
 
A novel railway system NBP (Neue Bahntechnik 
Paderborn) is under development at the University of 
Paderborn [1]. The novel system is characterized by 
autonomous vehicles travelling on demand instead of trains 
in accordance with a fixed schedule [2]. The vehicles, so-
called railcabs, are driven by a doubly-fed linear motor, 
and comprise an active guidance and an active suspension 
for improved comfort.  
 

 
 

Fig. 1: NBP Test Track 
 

 
 

Fig. 2: Linear motor driven test vehicles 
 

In order to investigate the complex mechatronic system, a 
test plant in scale of 1:2.5 was built in 2002 at the 
University of Paderborn. The test track consists of an oval 

with one switch and straight curved stretches having a total 
length of about 530 m. The gradients are up to 5.3% to 
demonstrate the enhanced climbing capability of linear 
motors (Figure 1).  
Two railcabs (Figure 2) can be operated at the same time 
with a maximum speed of 36 km/h. The length of a railcab 
is approximately 3 m. The body’s height and width are 
about 1.2 m. One railcab has a mass of nearly 1200 kg. 
After giving a brief summary about the test plant the focus 
of this contribution is placed on the operating point 
assignment of the doubly-fed linear motor. The working 
principle of the latter is described in chapter II 
supplemented by an illustration of the energy flow. The 
operating point assignment is outlined in chapter III for 
optimizing the energy flow by the mathematical treatment 
as multiobjective optimization in chapter IV. The paper is 
closed by a discussion of simulation results in chapter V. 
 
 

II. DOUBLY-FED LINEAR MOTOR  WITH  
ENERGY TRANSFER 

 
The primary of the linear motor is installed between the 
rails and the secondary is fitted below the undercarriage of 
the railcab. If the power is supplied to the primary and 
secondary independently implying independent alignment 
of the current vectors, the railcabs can be operated in 
asynchronous mode, which offers two additional 
advantages [3].  
On the one hand, this operation mode allows a relative 
motion between several railcabs running on the same 
primary (Figure 3), while on the other hand, a contactless 
energy transfer into the railcabs becomes feasible. This, in 
combination with an on-board hybrid energy storage, 
makes overhead lines or third rails superfluous. 
 

 
 

Fig. 3: Working principle of a doubly-fed linear drive 
 
Studies have shown that the absolute value of the power 
transferred to the secondary depends on the operating point 
of the linear motor [4]. The transferred power depends on 
the motor currents and frequencies of primary and 
secondary. The energy flow between primary, secondary 



and on-board power supply (Figure 4) can be controlled by 
variation of these values.  
Less ohmic losses of secondary dSP  and less demanded 
mechanical power MP  yields increased charging power 

BP , which is directed via bidirectional converters to either 
a battery or a supercap of the on-board storage. If the 
transferred power does not suffice to compensate the 
railcabs requirement of energy, the on-board energy 
storages are discharged.  
 

 
 

Fig. 4: Energy flow of linear motor 
 
Thus an “intelligent” operating point assignment is 
required in order to minimize the losses of the linear motor 
and the on-board energy storage volume, weight and costs. 
 
 
III. DRIVE CONTROL STRUCTURE AND METHODS 

OF OPERATING POINT ASSIGNMENT 
 

The drive control structure of a railcab is shown in Figure 
5. Depending on the target position of a railcab a jerk 
limited profile generator assigns the reference values of the 
current position *

Mx  and speed *
Mv . By means of a 

cascaded structure of position and speed control the 
reference thrust force *

MF  of the linear motor is 
determined.  
 

 

 
 

Fig. 5: Drive Control structure of the test track 
 
A railcab energy management calculates the demanded 
power *

BP , which has to be transferred via the drive. 
Considering these two values and the measured speed Mv  
of the railcab the operating point assignment determines the 

reference values for frequencies and currents of both motor 
parts. The stator references have to be transmitted to the 
primary power supply via radio, whereas the references of 
the secondary have to be processed by the secondary 
current control. Both current controls are based on a 
primary current oriented reference frame [5]. 
The operating point assignment consists of a multiobjective 
optimization method considering two objectives: 
 

• the maximum degree of efficiency η  
 

• the maximum converter utilization factor SNη , 
taking in consideration the ratio of real output 
power to apparent power of the linear motor 

 

For comparing both optimization objectives one operation 
point of a railcab on the test track characterized by a thrust 
force *

MF  of 200 N, a speed Mv  of  36 km/h and a 
transferred power BP  of  2 kW is considered. Typical 
characteristics of these objectives are summarized in 
table1. 

 
TABLE 1 

CHARACTERISTICS OF OPTIMIZATION OBJECTIVES 
 

 η - 

optimization 
SNη  -  

optimization 
secondary reactive power 

[kVAr] 
7.72 2.97 

primary real power [kW] 6.63 9.36 

secondary copper losses 
[kW] 

0.69 0.31 

 
By definition an optimization considering a high efficiency 
the needed primary real power becomes minimal. But 
copper losses and the apparent power of the secondary are 
still higher than using an optimization based on the 
converter utilization factor. Hence, if the temperature in 
secondary rises and the cooling of this motor part is not 
sufficient, an SNη -optimization should be preferred. If the 
energy storage of the railcab is discharged and the batteries 
state of charge is low, the optimization based on SNη  
should be favoured, because in this case the reactive power 
oscillating between secondary and battery (flicker-effect) 
generates an extra load to the battery. 
For a multiobjective optimization method based on η and 

SNη , the temperature of the secondary Sϑ  und the state of 
charge of the battery q  should be considered, too. 
 
 

IV. TREATMENT OF THE MULTIOBJECTIVE 
OPTIMIZATION PROBLEM 

 
As described above, the goal is to optimize the two 
objectives η  and SNη  simultaneously. Since these two 
objectives are contradictory this leads, mathematically 
speaking, to solving a corresponding multiobjective 
optimization problem (MOP). It becomes necessary to find 
those points in parameter space which describe the optimal 
compromises with respect to the given objectives: a point x 
in parameter space is called optimal – or a Pareto point – if 



there is no other point which is at least as good as x in all 
the objectives and strictly better in at least one objective. 
The corresponding set of optimal solutions is called the 
Pareto set. 
Recently a new set oriented numerical approach has been 
proposed for the numerical treatment of MOPs  ([6] [7]): 
starting with the entire set of possible parameter values of 
the MOP this set is permanently subdivided and refined 
producing increasingly finer coverings of the Pareto set. 
The algorithm stops if the desired  granularity of the 
resulting covering is reached (see e.g. Figure 6).  Since this 
method has proved to be very efficient, it is also the 
method of choice in the present context. 
 

 
Fig. 6: Working principle of the subdivision techniques: the set of possible 

parameter values is permanently subdivided and refined. The 
pictures show a resulting box collection of a MOP consisting of 
three objectives in 3-dimensional parameter space for 10, 15 and 21 
iteration steps. For details see [6]  and [7]. 

 
Once the entire Pareto set for a given working point 
( Mv , MF , BP ) has been computed, one has to determine 
"the ideal" point within this set for the given problem. 
Thus, an appropriate so-called "decision maker" is needed. 
 

 
 

Fig. 7 a): Entire Pareto set for one simulated working point 
b): Zoom - Illustration how the Decision Maker works on a selected 

interval of the Pareto set 
 

Based on the relations summarized in Table 1, a decision-
making algorithm was developed, which takes into account 
two variables as mentioned above, namely the charging 
state of the battery q  and the temperature of the secondary 

motor part, Sϑ . If the battery is being charged, then only 
the temperature Sϑ  is regarded.   
To be more precise, the decision maker works as follows: 
The function values of a point of the Pareto set are 
considered. A point *x  is accepted as a good point, if the 
ratio of the two objective values of *x  is equal to a 
specified value K , which depends on Sϑ  and q . 
Furthermore the neighborhood of *x  is taken into account. 
If a small decrease of one objective causes large benefits of 
the other one, the working point *x  is adapted, until a 
prescribed slope of the tangent at *x  is exceeded.  Figure 7 
shows a typical Pareto set during the run of a railcab and 
illustrates  the principle of the decision maker. 
 
 

V. SIMULATION RESULTS 
 
A simulation model of the linear motor and the load cycle 
of the test track was used to obtain first results and 
impressions by using multiobjective optimization methods. 
 

 
 
 

Fig. 8a): max. possible efficiency (red),  max. possible converter 
utilization factor (blue) and values of multiobjective 
optimization (black) 

          b): primary current references:  degree of efficiency (red), converter 
utilization factor (blue), multiobjective optimization (black) 

          c): temperature of secondary (red) and railcab battery load value 
(blue)  



The plots presented in Figure 8a to c belong to a simulated 
drive of a railcab around the 450 m long track oval with an 
acceleration up to a speed of 36 km/h and at the end a 
brake process down to 0 m/s. In order to get more 
demonstrative changes of the operation point assignment 
the increase of the weighting factors of the decision maker 

Lϑ  and q  are augmented above common rated values. For 
visualization the same changes without an augmentation 
the simulation period would have to be raised extremely. 
Following the lapse of the battery charging state depending 
on the battery current (Figure 8c), the time sequence of the 
two step decision maker is split into three time intervals 
and so two switches happen during the simulation time.  
Considering  the optimized primary current in Figure 8b, 
the first switching action is visible after 4s. The battery is 
no longer discharged and so the charging state rises and q  
has no longer an influence on the decision maker and in 
case of the low temperature of the secondary the operating 
point of the drives follows solely objective functions 
maximizing the efficiency (Figure 8a). If the temperature 
increases, the efficiency deviates from its maximal value 
and objective functions, maximizing the converter 
utilization factor, are focused on. Because the ohmic losses 
of this motor part are reduced, the rise of temperature in the 
secondary goes down. 
 
 

CONCLUSIONS 
 
Doubly-fed linear motors driving railway vehicles can be 
used for energy transmission into the vehicles, if a special 
operating point of the motor is assigned by the control 
structure. In consequence of their design and the large air 
gap linear motors do not reach high efficiencies. A 
multiobjective optimization method can be used to optimize 
the operating point assignment. In this case possible 
optimization objectives could be the efficiency and the 
converter utilization factor of the linear drive. 
The advantages using such a multiobjective optimization 
are based on the consideration and evaluation of the entire 
Pareto set in contrast to classical optimization methods. 
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