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Abstract:

For feeding piezoelectric ultrasonic motors different kinds of resonant converter concepts are well proven, but a
common problem are their bulky and expensive resonant inductors. Therefore, power converters which do not
require heavy inductors are of great interest. In this contribution power converters with non-resonant output filters
are investigated for reducing weight and volume of the magnetic components. The design of such a power con-
verter for a travelling wave type ultrasonic type motor is presented. Implementation highlights like the design of
the filters and the concept of an universal digital modulator are outlined and measured results are presented.
Finally the concept is compared to resonant converters under consideration of weight, volume and efficiency.

Introduction

Several types of piezoelectric ultrasonic motors
(USM) are known ([1]) e. g. the travelling wave type
ultrasonic type motor (TWUSM). Two main prob-
lems must be dealt with when operating these
motors. First, the control of USM is usually relative
complex and second, USM must be fed with high
frequency input voltages almost free of harmonics.
Latter two problems are even more involved, if a
coupling between control and the feeding concept
exists as addressed in [6].

Resonant converters (RC) are well known for feed-
ing USM. Different kinds of RC have been discussed
and proven, e. g. in [2], [4], [5], showing different
dynamics and efficiency. A common problem of all
kinds of RC-topologies are their bulky and expensive
resonant inductors. Moreover, the often highlighted
and particular advantage of piezoelectric actuators
which is the high power density erodes. The high
power density results mainly from the simple excita-
tion system (thin electrodes) in comparison to elec-
tromagnetic or magnetostrictive actuators, since they
need magnetic circuits and windings. Using RC for
piezoelectric actuators the magnetic circuits and win-
dings are only displaced to the power supply. There-
fore, power converters which do not require heavy
inductors are of great interest for feeding USM or
piezoelectric actuator in general, in particular for
high power systems, where the implementation of
inductors becomes an involved task, [7].

In this contribution a concept for reducing weight
and volume of the magnetic components is investi-
gated and the realization of a prototype converter for
feeding TWUSM is presented and compared to RC.

Concept of the novel power supply

The general idea is a weight/volume reduction of the
filter coils within the power converter by eliminating
the resonant inductors and using non-resonant output
filters!. The general topology of systems with reso-
nant or non-resonant filters may be similar, s. Fig. 1a,
but the inductance values of the filter coils are much
lower for the non-resonant concept and thus the com-

ponents can be designed smaller, while stressed by
similar currents. For having low harmonic distortion
when using such filters, the output waveform of the
inverter stage must be improved. Block wise inverter
voltages as used for RC are not sufficient any more.
In this contribution pulse width modulation? (PWM)
with high frequency switching (5 to 10 times supply
frequency f,) is used, s. Fig. 1b. Other concepts
incorporating multilevel inverters are also thinkable.
Fig. 1c shows the spectrums of the inverters output
voltage u;,,, and feasible transfer characteristics for
the resonant (grey) and the non-resonant (black) con-
verter concept. From Fig. 1 a higher flexibility of the
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Fig.1: General topology (a), waveforms (b) and concept
of resonant and non-resonant filtering (c).

1. Non-resonant filtering means only that the resonant fre-
quency of the filter (which may be a resonant circuit) is not
close to the fundamental output frequency.

2. PWM scheme was lately applied in [5] for feeding a
TWUSM but discussed only with respect to harmonic dis-
tortion of the output voltages.
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non-resonant concept can be anticipated as an advan-
tage, too. RC must be properly adjusted to the operat-
ing frequency f, and the piezoelectric capacitance
C b They provide an operating bandwidth of approx.
5% of f, , only. The operating bandwidth of non-res-
onant concepts is much wider and the system is
adjustable by the switching frequency f;, too.
Unfortunately, there are also some counterproductive
effects. Since the novel scheme lacks the compensa-
tion of reactive power through the resonant tanks, the
stored energy is no longer oscillating between the
piezoelectric capacitance C » and a resonant inductor
L, but between the piezoelectric capacitance and
the DC-link capacitors. This just permits the weight
and volume reduction of the coils but as a drawback
the inverter stage and output transformers must be
designed for higher VA-ratings resulting in higher
losses and larger heat sinks.

Filter design

The fundamental frequency of the desired output
voltage u cp which is the operating frequency f, of
the motor or actuator, is 40 to 45kHz for a TWUSM
(and from 20 to 100kHz for piezoelectric ultrasonic
actuators in general). Therefore the frequency ratio
A = f./f, , cannot be chosen very high due to a suit-
able limitation of f, with respect to losses, perform-
ance and costs of the power switches. Comprising an
apparent output power of the converter of up to 1kVA
per phase (for feeding a TWUSM of type AWMO90)
[, should be absolutely limited to 500kHz and for
good efficiency less than 250kHz .

Thus, A is in a range from 5 to 10 and the filtering
becomes critical because of the relative small margin
between fundamental frequency f, and the first
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Fig.2: LC-Filter (a) and its transfer behaviour (b).

appearing harmonics of u;, . Different filter con-
cepts were investigated incl. the well known Cauer-
Filter but a simple LC-Filter turned out as an appro-
priate solution, incorporating C p as part of the filter
completed by a filter inductor L, s. Fig. 2a.
Depending on the modulation concept higher har-
monics in u,, ~ are appearing approx. at frequency
fon. = 2h-f4 and higher harmonics, when using a
full-bridge topology. On the one hand the transfer
behaviour of the LC-filter should not influence the
fundamental component of u;,, at f, = 45kHz and
on the other hand higher harmonics should be elimi-
nated as good as possible. Additional problems are
the variations of f, in a range from 40 to 45kHz and
of C, (¥15%). The resonant frequency of the LC-
filter is adjusted to about 110kHz (nominal), which
turned out as a good compromise. As shown in Fig.
2b the amplitude and phase of the fundamental com-
ponent are not influenced very much, but high har-
monics (here in fact appearing at about 300kHz and
higher) are suppressed with a minimum of —15dB .

Modulator

In contrast to voltage fed inductive loads like con-
ventional electrical motors the LC-filter represents a
low damped resonant circuit and which must not be
excited at its resonant frequency by unprecise output
signals of the inverter stage. Therefore a precise
pulse-width-modulation concept is needed which
also enables an adjustment of pulse patterns for cor-
recting mismatched volt-sec areas due to delay times
and on-resistance of the switches. Because of the low
frequency ratio A the modulation signals must be
generated synchronously to the fundamental compo-
nent for avoiding subharmonics. The modulation fre-
quency is high (up to 500kHz) but the inherent
fundamental frequency f, must be very precise and
highly resoluted. Moreover the pulse pattern must be
variable in order to adjust the amplitude of the funda-
mental component (u, nv>1 =~ (u CP>1 for controlling
the piezoelectric oscillation system, s. [3].

In the following the concept and realization of a
novel universal, freely programmable, digital modu-
lator is presented. The concept is based on a modifi-
cation of the Direct Digital Synthesis (DDS).

Two different operation modes are implemented. Fig.
3a shoes the first scheme where a RAM/ROM con-
tains a shaping function fy, s. Fig. 3b. The stored
values of f, are successively read out, while an
addressing counter is increased by a frequency varia-
ble f, -depending clock signal SYSCLK. f;. is com-
pared to a reference value u;,, (representing the
desired amplitude of the fundamental component of
u;,,) by a digital comparator and the output repre-
sents the modulation signal z (z = 1 for fy <itj, ).
Counter and reference register (i;,, ) are allocated to
more than one RAM/ROM-comparator unit (s. Fig.
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Fig.3: Principle of digital modulator based on DDS.

3a) in order to generate several synchronous modula-
tion signals. The modulation scheme e. g. generates
modulation signals z, and z, as shown in Fig. 3¢ for
obtaining an appropriate waveform u;,  , but for
symmetrical gating of the power switches they are
converted to z', and z'y. This modulation scheme
has an important restriction. When increasing i;,,,
the block width can only be increased as shown by
the grey arrows in Fig. 3c using an unique shaping
function fg. Therefore an additional more flexible
modulation scheme is implemented which is shown
in Fig. 3d. The RAM/ROM contains directly the
pulse patterns which are read out by addressing the
memory by the counter, while the desired pattern is
selected by u;,, via a multiplexer and the higher
memory address. Complex and arbitrary waveforms
can by generated by this scheme e. g. for controlling
multilevel inverter stages. The stored shaping func-
tion/pulse patterns can be calculated off-line by opti-
mization or by triangular modulation, s. Fig. 4. When
using triangular modulation (a) the pulse patterns (b)
are calculated for different amplitude values u;,, for
deriving the shaping function fy (c).

Overall System

Fig. 5a shows the overall system of a pulse width
modulated converter (PWM-converter) with non-res-

onant filters for feeding TWUSM. It contains inverter
stages, transformers and filters for the two phases of
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Figd: Pulse patterns of digital modulator.

the TWUSM, gate drivers and various control and
monitoring logic. The modulation signals z are trans-
ferred from the modulator to the power converter by
fibre optic cables and the DC-link voltage up - of
about 315V is generated by direct rectification of the
mains voltage. Fig. 5b shows a photo of the power
stage. The size of the filter coils is significantly
decreased in comparison to a LC-RC, see last chap-
ter. But the size and weight of output transformers
and heat sinks and the expenditure for the inverter
stages is increased compared to a RC, because the
total power must now be delivered by the inverter as
stated above and additionally the switching fre-
quency f, is higher.

Experimental Results

Measurement results of output voltage and current
wave forms and efficiency are presented in Fig. 6.
The waveforms measured at frequency ratio A = 5
in Fig. 6a shows relative large disturbances but the
output voltage u,, is smooth enough for operating a
TWUSM in principle. The waveforms can be
improved significantly by increasing A (and f, ) but
the losses will be higher, too, as illustrated by the
efficiency measurement in Fig. 6b. Due to the low
power factor when feeding a TWUSM the maximum
efficiency of about 60% is normal.

Comparison

The goal of the novel feeding concept for TWUSM
incorporating non-resonant filtering was a reduction
of size and weight of the filter coils. Comparing the
theoretical area product (as a measure for component
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Fig.5: Overall scheme (a) and power stage (b) of PWM-converter for TWUSM.

size and weight) of a resonant and a non-resonant fil-
ter coil, the ratio is approximately 7.

In fact for the realization of the presented PWM-solu-
tion E-20 cores were used for the filter coils while, the
LC-RC requires E-36 cores. This means a real weight/
volume ratio of nearly 6. An additional advantage is
the high flexibility. But otherwise the size/weight
increase of heat sinks, transformers, etc., is enormous
for the total system and the disadvantages of the non-
resonant concept preponderate. Therefore the new
concept is not useful for most applications, except if
transformers are not necessary and cooling is availa-
ble via existent structures. In this case the non-reso-
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Fig.6: Measured waveforms (a), efficiency M (b).

nant filtering may allow a small weight reduction.
Some piezoelectric oscillation systems (e. g. most pie-
zoelectric ultrasonic power converter) can be operated
at a power factor of almost 1. Therefore the non-reso-
nant concept is more appropriate for such systems,
since it avoids some significant disadvantages of reso-
nant converters, s. [8].

Conclusions

In this paper the conception and realization of a
PWM-converter with non-resonant output filters was
presented and compared to a RC. It turned out that the
concept of non-resonant feeding of piezoelectric
motors may only be a suitable alternative in case of
very special boundary conditions but not in general.
However the concept fits for piezoelectric oscillation
systems with high power factor.
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