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Abstract - At the University of Paderborn a mechatron-
ic railway system (NBP)1 is designed and developed, which
is guided by ordinary wheels and rails and is driven via a
doubly fed linear motor. The concept is based on the oper-
ation of small shuttle units. The drive modules are de-
signed as single axle units. As a result of thrust and normal
forces the secondaries can pitch up and down because of
the arising torque around the axle. So the pitching angle of
the secondary remains an unstable state. Each of them in-
cludes two independently fed secondaries, one axle and the
respective primary element. This motion should be con-
trolled to ensure a constant airgap between primaries and
secondaries. In this paper the modelling of the system and
a method for pitch control with state feedback and output
integration for flexible mounted linear drives is described.
A Kalman filter is used for estimation of the state vari-
ables. Finally the simulation and experimental results of
pitch control for two secondaries are presented.

I. INTRODUCTION

The NBP railway system comprises autonomous operation
of small shuttle units driven by a linear longstatormotor and
being fitted with active guidance, suspension and tilting sys-
tems. Within the NBP project this railway carriage is designed
by using mechatronic design methodology [1] and the shuttle
itself is embedded in an overall logistic structure.

 Fig. 1.  NBP Shuttle with two linear drive modules

The linear motor is a complex electromechanical system
which mainly consists of two components, the primary (long-
stator), which is installed between the rails, and the secondary
(rotor), which is fixed below the undercarriage of the vehicle.
From the point of saving energy and improving efficiency, the
primaries are divided into many segments that are supplied by

different power supply substations. Depending on the position
of the carriage the primary segments are switched on accord-
ingly.

As mentioned above the vehicles are small shuttle units
which are fitted with two linear drive modules and can drive
very flexibly in two directions (Fig.1). In order to meet this re-
quirement the shuttles should be able to accelerate and decel-
erate at will. Therefore both parts of the linear motor, primary
and secondary, are fitted with three phase windings, so that
magnetic fields of both primary and secondary, can be orien-
tated at will [2]. The emerging tangential magnetic forces
(thrust) between primary and secondary accelerate or brake
the vehicle. Because of this kind of feature, the wheels are
used only for steering and guiding, the wear will be reduced
accordingly.

II. SYSTEM MODELLING

The force producing linear motion between primary and
secondary is named thrust force, the force in the plane perpen-
dicular to the direction of thrust is normal force For a rotating
machine, the normal forces balance out over its periphery
around the airgap. For a linear motor, the normal force cannot
be ignored.

Because the drive module consists of one axle, once the to-
tal torque on the axle at point  is not zero, the secondaries
will pitch along the axle. Then the airgap will be different to
the designed value. Not only the thrust force but also the nor-
mal force influences the dynamic process and pitch motion of
the secondary is regarded. In order to let the airgap remain the
designed value, some measures have to be taken to control the
total torque and the pitch angle   to zero.

 Fig. 2. Linear Drive Module and Coordinate System

Thrust forces and normal forces result in torques on the axle
(Fig. 2), which have different directions and values. To com-
pensate this torque by controlling the airgaps on both sides of

1. The project NBP (Neue Bahntechnik Paderborn) is sponsored 
by the federal state of North Rhine Westphalia and by the Uni-
versity of Paderborn.
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the secondaries, the secondary is divided into two parts, which
currents are controlled separately. In this way different cur-
rents are supplied in both secondaries, and therefore different
normal forces and torques become possible. The generated
torques of thrust and normal forces depend on many factors,
for example, currents of secondaries, airgap etc.

Obviously, the system is composed of different parts which
are mechanically connected to each other. The equations de-
scribing the system dynamics can be expressed very efficient-
ly by the use of the Lagrange method. The differential
equations that result from use of this method are known as
Lagrange’s equations[4]. 

All the forces, which generate a torque on the axle, are dis-
played in Fig. 3: thrust forces  and the vertical forces ,
excluding the secondary weights. The forces coming from oth-
er modules can be neglected for analyzing the system.

The kinetic energy of the system is the sum of the kinetic en-
ergy of each mass. The wheel is confined to move in the hori-
zontal direction so its kinetic energy is

  (1)

The secondaries can move in the horizontal and in the verti-
cal direction so their kinetic energy results in

   (2)

with the displacements of secondary 1 and secondary 2

 (3)

 (4)

  (5)

 (6)

 Fig. 3. System Structure with an amplified Airgap

The potential energy  is stored in two secondaries. Be-
cause of  the potential energy of the system is ze-
ro. Thus the lagrange is 

 (7)

The coordinates are selected as (X, ), and Lagrangian’s
equations for this system are 

 (8)

Equation (8) is the result of a complex nonlinear model. The
system will work near the point: , because the maxi-
mum pitch angle  is smaller than 1 degree and the real an-
gle will be controlled to keep more smaller than . This
justifies the approximations: , .
Moreover, when  is very small, the point  is very close to

 (Fig. 3). 

It is well known that no real system is completely linear, but
often the range of operation is such that linearity can be as-
sumed. The stable point of the system is  and the real op-
erating point will be close to it. Therefore, (8) can be linearized
at this point.

After this approximation, the solution of (8) will result to

 (9)

and the linearized differential equations from (9)

 (10)
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    parameter, related to current of primary

   constant, related to geometric and electric parameters
of linear motor

   current of secondary

   current of secondary 1

   current of secondary 2

     current of primary

    airgap between secondary and primary

    designed value of airgap, namely, reference value

    airgap between secondary 1 and primary

    airgap between secondary 2 and primary

   certain point at which the system is linearized, that is

III. SYSTEM CONTROL 

A.  Decoupling of Thrust Control and Pitch Control

Equation (10) represent a fourth-order system with many
variables expressed by two differential equations, one for ve-
locity control, the other for pitch control. In order to control
the system, it is necessary to adjust the values of some inputs
to the system. Normally, some of the inputs will be available
for adjustment and these are referred to as the controlled in-
puts, whereas others will be disturbance inputs which cannot
be controlled. 

We assume the velocity remains constant under different
loads and the airgaps are kept constant at the same time. If the
load varies, the thrust force will change accordingly to keep
the velocity constant, then it will drive the secondaries away
from the balance status, consequently, the airgap between sec-
ondary and primary will be changed. And vice visa, because
thrust force is related to the currents of the secondaries.

Velocity and pitch motion of secondaries can be controlled
independently by decoupled control of  and , in other
words, thrust force for velocity control and normal force for
pitch control, so that the controllers are easier to design and to
implement. Velocity control becomes independent of pitch
control if the change of normal forces between secondary and
primary doesn’t influence the thrust force.

B. Coordinate System

The modelling and the control structure is oriented on a co-
ordinate system, which is common to all secondaries. Here the
electrical orientation of the primary current has been chosen as
the reference d- axis. Therefore the secondary current in the
orthogonal q-axis results in build up of thrust force because of
the interaction of stator flux linkage and the orthogonal sec-
ondary current vector. The reference of the q-axis current of
the primary is set to zero, .

 Fig. 4. primary current-oriented coordinate system

So the d-current of secondary  is adjusted to control pitch
motion (Fig. 4). Regarding pitching control structure (Fig. 5),
thrust force, airgap, etc. can be considered as disturbance in-
puts. As a result, we only have to analyze the second equation
of (10) to control pitch dynamic behaviors.

 Fig. 5.  Control Structure

IV. CLOSED-LOOP CONTROL DESIGN

A. Pitching Controller

According to the second equation of (10), the state variables
are defined as

,
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The resulting state-space equations are:

 (11)

namely

where D=0, H=0.  means the relative value to the point
at which the system is linearized.

After defining the controlled inputs, a controller is designed
which acts on d-axis currents of secondaries , , us-
ing the measurements of  and . The purpose of the con-
troller is to ensure that  and  remain as zero as possible
even if the disturbance inputs vary. Thereby, the torque ap-
plied on the axle will be zero.

Because the pair [A,B] is completely controllable, a matrix
K exists that can give an arbitrary set of eigenvalues of (A-
BK). That is, the two roots of the characteristic equation

 can be arbitrarily placed. We can find feed-
back controls from the state variables such that the states are
driven to zero, namely, the system state  should track the
input R(R=0) and the system should suppress undesirable
noise and disturbance inputs, no matter what they are. Accord-
ingly, we should introduce integral control in order to have the
output track the reference input.

Let the control input u(t) be given by 

 (12)

where  is a  feedback-gain matrix, and  is a 
feedback-gain matrix, both with constant elements. Naturally,
when =0, the system is a state controller with state feed-
back.[5]

 Fig. 6. block diagram of system with state feedback and 
output integration

Since the feedback system now has one additional integrator
(Fig. 5), the overall system is of (2+1)rd order and also con-

trollable. The closed-loop system state equations matrices are

 (13)

With the integral control, the closed-loop system has three
poles to be placed. There are six unknown coefficients of feed-
back gains, so the solutions are not unique and can be speci-
fied. Whether the solutions guarantee closed-loop stability and
good response can be tested by the closed-loop poles and the
simulation results.

Linear-quadratic controller design is used for continuous-
time systems to define the matrix of . As for the elements
of matrix , they can be assigned on the basis of the character
of system. When  is smaller than the reference input R,
namely, -R is negative,  should be increased by reduc-
ing the control input  or increasing . The elements of
matrix  have different signs. Since  is a nega-
tive feedback gain,  is positive and  is negative. 

B. Steady-State Kalman Filter

Full state feedback with output integration is used to control
the pitch motion of secondaries. Only the pitch angle is acces-
sible to measure. The observability test matrix  is
with full rank, therefore, the system is also observable. It is
possible to design an observer to estimate the pitch velocity
that is not directly accessible to measure using the measured
pitch angle and all inputs. 

The Kalman Filter takes into account measurement noise
and process noise, but the optimum Kalman filter is time-vary-
ing even if the system is time-invariant and difficult to imple-
ment. A suboptimal steady-state filter with a constant Kalman
gain matrix L is easier to realize and is usually satisfactory for
most applications [3].

The state feedback K and the observer gain L may be de-
signed separately to yield desired closed-loop system behavior
and observer behavior. Certainly, the separation principle is
available under the controllability and observability assump-
tions. 

V. SIMULATION RESULTS

According to the above design results, the control process of
the whole closed-loop system has been simulated by using
Matlab/ Simulink. 

There are three kinds of disturbance inputs in the linearized
system: thrust force, airgap difference, velocity change. Dur-
ing the system simulation, these disturbance inputs vary at dif-
ferent times in order to show which one is critical. In addition,
the system is linear one that obeys the principle of superposi-
tion. If the separate application of disturbance inputs produces
different results, then the simultaneous application of all dis-
turbance inputs will equal to the sum of them.

In Fig. 7 the different influences of three disturbance inputs
are shown. At first, a large thrust force affects the system, the
overall torque on the axle is above zero and  will become
positive. The normal forces  and  are inverse propor-
tional to the square of the airgaps. When  is positive, airgap
1 tends to increase and airgap 2 tends to decrease. Correspond-
ingly,  decreases,  increases and the torque  also
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increases which will drive the secondaries far from the point
we expect. Therefore, the secondary currents step up to coun-
teract the change of airgaps and the torque. Because of the sys-
tem’s inertia, it is impossible to return the steady-state
immediately when the disturbance is over. In fact, the system
will be stable after a small fluctuation.

 Fig. 7. Simulation Results

VI. EXPERIMENTAL RESULTS

A.  Digital Control and Test Bench

A test bench for the linear drive module, which is 8 m long,
has been built up (Fig. 8). It includes 12 primary elements
which are interconnected to two separately fed primary seg-
ments. The test vehicle is fitted with two secondary elements,
one axle, wheels, airgap sensors, current sensors, position sen-
sor, a DSP-control box, and power supply units. Implementa-
tion of control algorithms and analysis of experimental results
are done by the host PC, which communicates with the con-
verters via a SSI-interface.   

 Fig. 8.  Structure of the realized test bench

The objective of pitch control is to control two airgaps to a
constant value. Therefore, instead of measuring the pitch angle
directly, one laser sensor and one eddy current sensor are ap-
plied at the two ends of the secondary. Because of the constant
radius of the wheel, the pitch angle can be calculated in an easy
way via measuring the air gaps on the basis of geometric pa-
rameters. 

B. Experimental Results

Experimental results of pitch control is illustrated in Fig 9.
At t = 0, pitch control is disabled, and the pitch angle remains
the maximum. Then, the control is turned on at t = 3.3s. After
about 0.1s, pitch angle is controlled to the desired value, name-
ly, the airgaps between secondaries and primary segment are
kept nearly constant.

 Fig. 9.  Experimental Results of Pitch Control

Since the module is a linear drive module, drive control
takes precedence over pitch control, in other words, most of
secondary current should be reserved for drive control. In ad-
dition, if the system is driving and pitch control is on, pitch
controller needs only several amperes to operate. As a result,
the adjustable range of d-axis current of secondary is limited
to [0, 10.8A]. 

The rails of test bench make up of several steel bars and
there are small gaps between them. Two different kind of sen-
sors are applied in order to compare their properties, as a con-
sequence, the measurement error can not be compensated for
calculation pitch angle. In addition, mechanical inertia is also
existing. All of these factors have influence on the response
time and accuracy of pitch control.
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