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Abstract
A survey about a CAE-tool for the optimized development of SMPS is presented incl. its underlying
methodology, supporting the selection of power and control topologies by an expert system, the
magnetic component and thermal design by an enhanced modeling base for transformers and inductors,
embedded into the multi domain simulator SIMPLORER. Additionally, off-line tools for analysis of the
ever increasing multitude of new power electronic topologies and controllers based on
MATHEMATICA supplement the tool to facilitate an efficient evaluation and comparison1. A design
optimizer for magnetic components with solenoidal or planar windings is accessible through the
SIMPLORER simulation sheet, which proved its capability on various applications by considerable
power loss or volume reductions

1. Introduction
Switched mode power supply (SMPS) producers are facing fast technological developments in the fields
of power semiconductors, circuit and control topologies. Contrary to these positive factors for
innovation is the limited availability of computer tools capable of shortening the innovation cycle and
which assist the design personnel during  the entire development process of high quality products.

Available simulators used in the power electronic field neither offer a support for selection of switched
mode power supply (SMPS) topology and controller assigned to customer specifications nor a means to
perform the physical design and automated optimization of magnetic components. Since the capability
to adapt development schemes to new requirements and regulations decides about the future
competitiveness of SMPS-producing industries, the objective of the underlying project CAE-WPS 1 for
this contribution intends to reduce costs, time to market, required design expertise and to increase the
quality of virtual prototyping. This contribution describes a new design methodology for a computer
aided design tool for SMPS supporting the following functions:

                                                  
1 Funded by the European Community, Contract N° BRST-CT98-5310 (DG 12 - HIAS), Integrative CAE-tools for optimised development of
welding power supplies with high power density“, For information search for „CAE-WPS“ in "dbs.cordis.lu/EN_GLOBALsearch.html"
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• A computer aided selection (CAS) of the best matching power supply topologies using a knowledge
base.

• A computer aided DC and AC analysis (CAA) of power circuitry developed with a computer
algebra program generating input for improved model libraries [1].

• Design of power electronic, control circuitry and magnetic components, taking care of high-
frequency effects, using a computer aided design program (CAD) supported by the CAA-model
libraries, libraries for the selection of components, materials, and circuit and system simulation
using multi domain simulator SIMPLORER [2].

• Thermal design through SIMPLORER using compact models for power semiconductors and
magnetic components, while total assemblies are simulated using macro models for airflow, screens,
heatsinks etc. parameterized by thermal simulations and measurements [3] or by coefficients taken
from literature.

• Computer aided optimization (CAO) of magnetic components with respect to selected cost
functions which might be efficiency, weight etc. by applying state-of-the-art numerical optimization
algorithms [4], [5], [6].

Improved models for magnetic components with respect to electrical and thermal behavior upgrade the
SIMPLORER and simulation results and lead subsequently to more efficient designs.

Figure 1 illustrates the structure of the tool. The left side contains the modules of tool CAE-WPS, which

Fig. 1 :  Structure of CAE-WPS. Blocks on the left side represent blocks that generate
data for the knowledge base, which is used during the design stages shown on the right.
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are linked via the expert system to the design process on the right side. Note, that the expert system
comprises both the knowledge base and the expert system shell, which was implemented using CLIPS
[7].

2. Selection and Parameterization of a Power Circuit
Until today the development of WPSs, or in general SMPS, follows the time consuming and costly
procedure: The developer selects the circuit topology according to specifications predominantly using
already known and qualified concepts, which are not necessarily the optimal ones. After design of
components and calculation of stress quantities the selection of off-the-shelf components is performed,
while the magnetic components are specifically designed. It is not common practice, yet, that the total
circuit comprising power and control part, is simulated before building it, in order to reduce the time
consuming and costly experimental phase. Reasons are lack of adequate models for power components
and wiring/parasitics. Thus, the design duration and the results are heavily relying on experience,
qualification and motivation of the designer, which is a non satisfying, intolerable situation.

The software system CAE-WPS is structured modular (see Fig. 1) and shows three different levels: at
the lowest level software modules are generated, supporting/accelerating the analysis and design stage
by computers. Although the various modules are coupled an interactive operation is supported and the
comparison of design variants. Optimising strategies are forming the base for the intermediate level,

Fig. 2: Typical  output of the assessment of topologies by TSelect
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supporting the design of magnetic components but not the total power electronic circuit, yet. The
highest level is devoted to the expert system which supports the user by selecting the right circuit and
controller topology, type of magnetic assembly and makes use of former projects.

Contrary to above mentioned hand governed design process – supported in maximum by decoupled
computer tools – nearly the entire design is computer assisted within CAE-WPS. More specifically,
aspects of power electronic circuitry are treated within module CAE-PE (see Fig. 1), which comprises a
topology library, a component library, and selection rules. Using computer aided analysis of converter
topologies based on Mathematica [1], [8] symbolic expressions for design rules and stress quantities are
calculated and fed into the knowledge base. Before calculating evaluation criteria for each converter
pre-selection rules are applied, which provide criteria for exclusion of topologies not suitable for the
given specification in order to raise the efficiency of the tool. For qualifying topologies, however, part
values and stress quantities are computed yielding a means to compare them in respect to user defined
design goals. The software module TSelect generates a choice table (incl. estimated values for volume,
cost, and losses, see Fig. 2) serving to select a topology, for which a ready-to-use SIMPLORER
simulation model is created automatically and initial values are calculated, as depicted in Fig. 3. After a
training on the tool the industrial partners of the project used the tool to develop welding power supplies
based on state-of-the-art topologies, such as  [15]  and [16].

3. Controller Selection and Design
The controller selection and design tool (CAE-Ctrl) (see Fig. 1) used to compare different control
schemes is also based on results obtained by a Mathematica based software package. Knowledge gained
by the use of this module is fed into the knowledge base to assist the designer selecting the appropriate
control scheme. For enhancement of the user interface control schemes are included in the simulation
templates available for each topology. Like the part values, the controllers are automatically
parameterized by TSelect when generating the electrical simulation model. So far, basic control schemes
like peak-, average- [11], [13], and constant-on-time-current-mode control were implemented and tested.
A typical implementation is shown in Fig. 4, which employs both block diagram and state graph to
model the controller and modulator.

4. Thermal Model
The tool CAE-WPS in conjunction with SIMPLORER allows generation of  temperature predictions
based on compact modeling of components and of the WPS-assembly. The use of ordinary differential
equations allows the description by equivalent  resistance-capacitance networks, which became only
recently a viable tool for system design and are of course simple to integrate in a multi domain
simulator. Primarily used in electronic equipment cooling the networks are derived either numerically or
experimentally, see [14]. However, no other reference is known on parameterization of such models in
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order to generate an optimum electro-thermal system design. Using TSelect, for each power electronic
component the average power dissipation is calculated, either by direct symbolic formulae or via
simulations. The dissipated power is input to a thermal model of the magnetic components and the

power supply assembly, which comprises power electronic parts as well as heat sinks, fans, screens,
wind tunnels, etc. Thus, it is possible to locate hot spots within magnetic devices and the assembly
before the prototyping stage. An excerpt of a typical model is depicted in Fig. 5.

5. Magnetic Component Design and Optimization
The design of magnetic components (CAEOMAG) is performed within two steps, see [4] and Fig. 6 for
data flow between CAEOMAG and SIMPLORER. A rough pre-design/optimization, included in the
expert system, is implemented, based on the area product approach using simulated stress quantities,
wherefrom crest factor, volt-second etc. derive. This pre-optimization algorithm provides data about the
expected volume, losses and temperature rise of a fixed core and winding set-up of inductors and
transformers, inputted via a graphical user interface, see Fig. 7 a). Thus, initial values for a subsequent
optional parameter optimization of these components are derived. The core and winding dimensions, like
e.g. the air gap width, the layer thickness in gapped inductors and in transformers are optimized with
respect to design objectives such as minimum temperature rise, minimum power losses, etc.,
summarized in objective function F, see [4], and which is shown in Fig. 7 b).

The underlying electrical winding model, briefed in [4] and elaborated in [5], supports planar and
solenoidal wound gapped inductors and transformers using foil, litz or round wires and considers all
relevant parasitic effects like eddy current losses, leakage, gap effects and core losses including rate
dependencies and capacitive effects. Skin and proximity effects, caused respectively by inner current
density displacement and by eddy currents, are considered in a way that considerable accuracy
improvements result [6], [12]. Edge effects are considered by manipulating the skin effect factor after
FEA analysis of foil windings in solenoidal structures and multi-turn windings in planar structures were
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evaluated. To account for gap effects caused by the fringing field in air gaps, a method utilizing the
current sheet technique and a separate field solution for induced fields was implemented for linear
gapped solenoidal inductors in [6] and [12]. The core is divided into straight and curved segments
whose respective losses are summarized to the total core losses. The reluctances of the segments are
calculated using mean cross section and path length formulations. The influence of air gap fringing is
considered by applying conformal mapping techniques. The capacitance model uses a plate capacitor
approximation assuming a radial electric field for solenoidal and an axial field for planar structures.

6. Experimental Results
Fig.  7 a) shows an excerpt of a schematic of a power stage of a 5 kW (10 kW peak) welding power
supply and the user interface of the transformer design and optimization together with the objective
function (see Fig. 7 b)) using a constant core but variable primary and secondary conductor thickness.
Note, the two major subminima caused by the discontinuous change in parallel connected wires to fill
the window as good as possible. Losses of the original design are reduced by at least 24 %, which leads
to a temperature decrease of 27 °C. The model accuracy compared to measurements of the original
transformer is depicted in Fig. 8 using the short circuit impedance as model quality indicator. The model
reveals good agreement with the measured values as well for the resistance as for the inductance. Please
note, that the winding consists of two different winding types, complicating the modeling tremendously.
The matrices Cs and Cp code the series and parallel connection scheme of the layers. Entries of 1 in the
i-th and j-th column of a row in Cs indicate a series connection of these layers. Analogous is true for the
parallel connection.
Fig. 10 shows the connection editor. Layers are numbered starting from inside. Type of conductor (foil,
litz or round wire), thickness of layers and number of turns are set.
As shown in Fig. 9 a) for a 5 kW welding power supply an inductor was optimized and designed. The
air gap length and the conductor thickness are optimized while other dimensions are kept constant. Fig.
9 b) shows a parameter optimization of the air gap width and conductor thickness with the objective
function F being minimized.
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After optimization a configuration of 10 litz of 30 strands in parallel and 10 windings is found. The
optimized air gap width  is set to be 6.36 mm. The results are outlined in Fig. 9 c). The model accuracy
is illustrated in Fig. 9 d) with resistance factor ACF  as quality factor. Depicted are measurement results

(mea), and  ACF  considering only 1D-effect (1D), ACF  considering 1D and 2D (air gap) effects (tot) and

correction of the last taking the resonance into account (corr).The accuracy error between measurement
(mea) and simulation (corr) is less than 5%at a switching frequency of 40 kHz. Temperature
measurements are illustrated in Fig. 9 e). The difference between measurement after 1500s (~80°) and
simulation (88°) is about 10%. Considering that the measured temperature value at steady state is a
little higher this error is even smaller.

Summary and outlook
In this contribution a CAE-tool for the optimized development of SMPS is presented incl. its underlying
methodology, supporting the selection of power and control topologies by an expert system. The
methodology and results of simulator-coupled magnetic component design and optimization tool are
outlined. Optimization and modelling of welding power supply transformers and inductors are
presented. The optimization shows a power loss reduction of a selected transformer of at least 24%. All
parasitic effects are considered in the modelling so that design results and measurements are quite
accurate.
Further research and implementation work  e.g. in fields of low power topologies, filter design, upgrade
of electro-thermal modelling of magnetic components and assemblies is planned towards maturing the
CAE-WPS tool. A web-based tool which is under development, will be available at the beginning of the
next year, while the whole development facilities will be available as add-on to SIMPLORER in 2002.
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