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Abstract - A new design and optimization methodol- 2. turn ratios,

ogy is presented for magnetic components used in 3. allowable / desired leakage inductances,
switched mode power supplies for welding applica- 4. allowable self and coupling capacitance,

tions which links the system level simulator SIM- - the stress quantities, winding voltages and cur-

PLORER and a magnetic component design and '€nts, o o
L thermal and topological information like
optimization tool, called CAEOMAG.

. . . 1. number of windings,
In this contnbunop the methodology upderlymg the 2. unipolar or bipolar flux excursion,
new software tool is described, its benefits are summa-

rized and selected example designs are given. But no information is available about the physical
) design of the magnetic components. State of the art
[. Introduction CAE-tools for circuit simulation and design like SIM-

Manufacturers of switched mode power supplies foPLORER [6] or PSPICE [7] do not offer an embedded

welding applications are facing on the one hand a mor%hys'Cal design and optlmlzatlpn of magnetic compo-
competitive market and on the other hand a fa en'ts. However, the mformaﬂqn apout the physical
advance of technology. To maintain market share, th esIgn IS necessary tqjudge a circuit when compared.
reduction of the time-to-market is inevitable. This waéa‘dd_'t'ona",y’ .magnenc. components nged to' be
the motivation to set up a knowledge based system eS|gngd individually with regard tp their elggtrlgal,

the framework of the Brite-Euram-Craft project Inte-topological, thermal and mechanical specification.
grative CAE-tools for optimized development of Weld_thout regardlng the individual physical realization

ing power supplies with high power density - “CAE _of a magnetic component at an early development

WPS* supporting topology preselection with respect stage unfavourable and unre'al'istic specificationg occur.
input / output specification of welding power supply toThese d|sadv'antages of gxystmg tools are avoided by
be developed , their DC and AC analysis for power cir!he_ new QeS|gn anq opt|m|zat'|on. tOQAEOMAG‘
cuit and controller design. The methodology of thiSWhlch is integrated into the circuit simulator SIM-
knowledge based system is explained in [1]. PLORER.
Pre-parametrized simulation sheets are generated rjﬁ- gtructure and data flow, methoglology and. mathe-
resenting the starting point for the simulation aide at|c§1I b,aCkngU”d and resulting benefits are
iterative design. Design alterations of the passive Cong_escrlbed in this paper.

ponents are accelerated and the choice of semiconduc-

tors are supported by a library so that iterations toll- Structure and data flow of CAEOMAG

attain a desired circuit behaviour are speeded up.  The data flow between CAEOMAG and SIMPLORER
The only information available through a CAE designis illustrated in Fig. 1. CAEOMAG is called by a
process is the electrical specification for magnetigraphical user interfacémplemented aSIMPLORER

devices comprising values for Wizard. The Wizard belongs to a specific component
topology. Currently, the following components are dis-
1. inductances, tinguished:

1. Funded by the European Community, Contract N° BRST- . :
CT98-5310 (DG 12 - HIAS), Integrative CAE-tools for optimi- 1. Linear, gapped inductors (Lopt).
sed development of welding power supplies with high power 2. linear two-winding transformers. (topt2W)

density”, For information search for ,CAE-WPS" jittp:// 3. linear three-winding transformers (topt3w)
dbs.cordis.lu/EN_GLOBALsearch.html“.
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Fig.1:Dataflow between SIMPLORER and CAEOMAG.

Each Wizard belongs to a circuit model, as indicated in  a) Circuit model of a linear inductor
Fig. 2. They consider eddy current effects in the wind- Z(w)
ing and capacitive effects. Each impedance in the cir- R, Ry
cuits is approximated by a partial fraction network of a [ Ry L,
linear inductor. The impedances are calculated from a "(I:'__{E]
quasi-stationary field analysis (only skin effect without “ T L, Ly
displacement current) and are approximated by the net:
work using a least square method for parameter fitting. ) Circuit model of a two winding transformer
The capacitive effects are accounted for by capaci- )
tances parameterised by an electrostatic analysis. Fo I Zy n:1 Zsy i
inductors, the self-capacitance is determined and for
transformers the coupling capacitances are used foru,
deriving the network elements between to windings
depicted in Fig. 2 b).
The higher order elements (n>0) and the parasitics car
only be determined accurately once the first physical c) Circuit model of a three winding transformer
design is generated. Therefore, to predict the influence  (Note: Capacitances are left out for brevity)
of the component on the circuit approximate values of i, Zy n,:n [
the circuit properties are assumed for the first run. ‘ .
u P

S

sl Zsl |51
These are further refined iteratively by updating the Ly Usy
model subsequentely. Hence, the models generated by .
CAEOMAG regarding all parasitic elements are fed 7 :
s2 s2
b
nSZ

back to the simulator in order to fine tune the results.
Before starting CAEOMAG a simulation has to be per-
formed yielding the stress quantities at the terminals of

the component. They are collected in a column ori- _
ented file (timed.dat) and represent thus time domain Mo
data. Due to the fact, that CAEOMAG uses frequency Fig.2:Circuit models of the Wizards.

domain methods, a harmonic continuation is per-

formed. This requires the selection of a time intervafourier ~ transform  and  harmonic  analysis
starting from the end of the simulation record used fotime_from_end). It should reflect the steady state con-




dition of the circuit under investigation. 2. A model for the core: Resulting magnetic circuit
Usually, an unexperienced design engineer cannot con- and core losses.
clude from stress quantites and circuit parameters to a3. A capacitance model: Resulting Self- and Cou-

physical design. pling capacitances.
To ease the search for a good starting point the design4. A thermal model: Resulting peak temperature rise
and optimization tool allows a pre-optimization (PRE- at free and forced convection conditions.

OPT) of the device with respect to simulated stress 5. An equivalent circuit model
guantities. This yields a core choice and starting valuebhe different models are described in the following
for the parameter model used by the succeedingubsections.
parameter optimization [2],[3]. The parameter model I11.1 Model of the winding
allows the automated optimization of e.g. the Iayeﬁ_ ; )

wo different winding structures are supported: planar
thicknesses or core dimensions with respect to an d solenoidal Fig. 3). A di ional field
objective function, which can be size, costs, etc. angnd SO §n0|_ al (see Fig. 3). one_ |men3|9na e
constraints like temperature rise, maximum saturatiofdlculation in the frequency domain regarding eddy
induction etc.. Free design parameters can be selectédfreént losses is applied first ([2], [4]). This yields an
from a menue. State-of-the-art genetic algorithms an@hpedance matrix of the component
a heuristic search method are used for optimization.
They evaluate the core-winding set-ups representing Ri,+jwL,, ... Ry, +jwL
. ; . . 11 11 1L 1L
intermediate designs automatically and vary parame-

: R L Z(jw) = Y
ters during an optimization in order to minimize an _ _
objective function to user demands. R q+iwl 4 .. R +job |
[ll. Mathematical background and The elements are calculated as follows:
methodology 1. Layer resistances:

In order to apply an unconstrainted optimization algo-

fithm the objective function has to summarize the R, = R, [F ('V')+N Z DC w (M) )
results of a calculation model into one value, which is

minimized by the optimization.

The developed calculation models predominately use 2. ,Proximity“-resistances:

analytical methods in order to reduce the computation

time for the evaluation of the objective function. (M) ™)
The following models are used: R = N RDC i (Fpr + NiN; Z Roc, wtFpr, )

1. A model for the winding: Resulting impedance

matrix and winding losses. 3. Self inductances of the layers:
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Fig.3:Cross-section of the supported winding structures: a) planar and b) solenoidal.



i—1 ers, so that the inaccuracies of the onedimensional field

2 2 solution is not significant.
AN +N; Z Nz w Gap effects are caused by the fringing of the magnetic
L= w=1 @ field in the core when passing through air gaps. On the
i = one hand, the reluctance of the airgap increases due to
(M) (M) increase of effective cross section area, on the other
LpcitFsy, * N Z N w D:pLW hand the fringing field penetrates the layers in the wind-

ing window causing additional losses at higher harmon-
ics of the inductor current. To account for these effects
4. Mutual inductances: in the electrical model of inductors, a method derived in
[2] and [3] was implemented for linear gapped, solenoi-
dal inductors. It utilizes the current sheet technique and
AcNiN; + NN, Z Nz w a separate field solution for the induced fields to com-
pute the additional losses. They are superimposed to the
L. = (5) losses determined from the method neglecting airgap
Mj (M) (M) effects. Aggir?, windings of foils, round wires and litz
AL Pl * N N, Z AL wF wires are distinguished.
- [11.2 Model of the core
the DC-self-in-The magnetic circuit of the core is analyzed using the
methods presented in [2]. The core is devided into

Here, Ry isthe DC-resistancé, -

ductance,A¢ the DC-reluctance of the coke andtraight and curved segments and the reluctances of
] ] these segments are calculated using mean cross section
Az the DC-reluctance of layer and insulation. and path length formulations. The flux density and
The frequency dependent factors consider the followlosses in all these segments are calculated and summa-
ing eddy current effects: rized to the total core losses. Rate dependencies of the

losses are considered according to the method pre-

sented in [5]. The influence of airgap fringing on the

gap reluctance is considered by applying conformal

mapping techniques [2], yielding accurate formulas to

2. Power loss increase due to induced eddy cupredict the losses for legs with a circular or rectangular
rents caused by other layers: cross section.

1. Power loss increase due itmer current den-

sity displacementh\é) (=z1)

F(M) (20) [11.3 Thermal quel
After the heat sources are determined a thermal model

3. Decrease of stored magnetic energy due tis used to predict the temperature rise. From the Nus-
(M) selt-numbers (free convection) and Reynold-numbers

inner current density displacementFg,* (4t forced convection) of each surface facing the ambi-
ent thermal resistances core-to-ambient and winding-

(=1)
4. Decrease of stored magnetic energy due t%) -ambient are derived.
induced eddy currents caused by T T
K W
i (M) (<1) Ty —
external fields: F <1).
pL Rin, ku Reh, kw T Reh, w

The upper index M indicates the conductor type, imply- =) P
. . . A . K W
ing different formulas for all wire types: Foll, Litz-wire
and round wires. Fig.4:Two node thermal model.

Accounting for edge effects is perfomed by manipulat-
ing the skin-effekt factor. FEA parameter studies SlmlTogether with the heat transfer by conduction between

lar to those described in [9] were performed for anaIyS|gozebf.mr(]JI l/jvmdm?:'an 4eq_|t_1r|]valent tW% nqd; CII’tC uit is
of foil windings in solenoidal components and multi- established (see Fig. 4). The core and winding temper-

turn windings in planar structures. Due to high currentgure are understood as mean temperatures. The tem-

in windings of magnetic components in the power tralrpedratl'“':e npplet in the gori IS ?ﬁglectzd whereas tge
of welding applications usually single turn or in maxi- ra Ic?b emlpera uredg:a lent in the winding is consid-
mum 2 turn windings will be used in planar transform- ered by a layer mode



IV.1 Capacitance model
The capacitance model uses a plate capacitor approxi-
mation assuming a radial electric field for solenoidal
and an axial for planar components (see Fig. 5).

IV.2 Objective Function and parameter
optimization
The objective function collects the information genera-
ted from the model and summarizes the resulterie
scalar value.
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The model valuesY;(x) are weighted with user

defined weighting factorsy, and are superimposed to

the penalty functionP(g(x)) punishing senseless 1
parameter configurations or constraint violation result- Ci3 = 3C
ing in the objective functiorF(x) to be minimized. Fig.5:Plate capacitance model and circuit model.
The objective function is called by the parameter optithe structureX = [d, |, Core-geometry for induc-
mization algorithm, passing the free parameter vector -
and constant parameters to the objective functiof®'s andX = [dy, d,..., B, Core-geometry for trans-
Obviously, the objective function can be used for thdormers. An evolutionary strategy using floating point
evaluation of a given design if no parameter is variethumber representation is used, representing a non
by the optimizer. Typically, the parameter vector hasleterministic global optimizer whereas the NELDER-
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CoreData | TopoData WindData | 0ptioption | Einstellungen | Optimicrung |

Name [wert [infa -
dbob Te-3 Desircd thickness of applicd bobin
air_center 0.5e-3 Distance bobin to airgap

air_upper_lower 0.5e-3 Air between upper and lower bridge

rhocu20 17.857¢-9 Spec. resistance of layer material at 20°C
alpha_cu 0.004 Temperaturecoefficient of winding material
deu 8900 Density of layer material

wind_mat draht Material of winding ["litze""draht" folie™: .
gapflag 1 1=Accurate computation of losses caused..
mx 1 Number of parallel wires: NECESSARY FO.
n>x_max 4 Maximum allowed number of parallel wires
Ns 10 Number of strands in a litz wire: NECESS...
Nsmax 400 Maximum number of strands in litz wire
herep 6c-3 Creepage distance in foil windings

hzfolie 0.05e-3 Isolation thickness of foils

hzdraht 0.02¢3 Isolation thickness of round wire and litz ...«
il | _'l_I
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Fig.6:a) A part of a SIMPLORER-worksheet of the 5 kW-welder (10 kW peak) and the Wizards for a transformer
b) Result of a parameter study and ¢) comparison of optimum and current design.
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Fig.7:Measured and simulated resistance ratio of 5 kW - transformer design example and its winding data.
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VII. Conclusion no. BRST- CT98 5310:

In this contribution the methodology and results of a
simulator-coupled magnetic component design and
optimization tool are outlined. Modelling results of a
welding power supply transformator are presented and
its optimization shows a power loss reduction for a
selected transformer of at least 24 %.
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