The following questions cover a range of topics you should master (i.e. >75% correct answers) before starting the course Fields&Waves in the Electrical Systems Engineering program at Paderborn University:

1. Evaluate
 (a) \(\sin \frac{\pi}{2} = \)
 (b) \(\cos \frac{\pi}{2} = \)
 (c) \(\sin^2 x + \cos^2 x = \)
 (d) \(\exp(0) = \)
 (e) \(\exp(-\frac{\pi}{2}j) = \)

2. Express \(e^{jx} \) in terms of \(\sin \) and \(\cos \) (Euler’s identity): \(e^{jx} = \)

3. Give the general real-valued solution of the ODEs
 (a) \(\frac{d^2}{dt^2} y(t) = -\omega^2 y(t) \) (with \(\omega \neq 0 \)): \(y(t) = \)
 (b) \(\frac{d}{dt} y(t) = -\gamma y(t) \) (with \(\gamma \neq 0 \)): \(y(t) = \)

4. Give the solution of the Fourier integral \(g(\omega) = \int_{-\infty}^{\infty} g(t) e^{-j\omega t} dt \) for
 (a) \(g(t) = \frac{d}{dt} f(t) \) (assume \(f(\omega) \) is known): \(\Rightarrow g(\omega) = \)
 (b) \(g(t) = f(t) e^{j\omega_0 t} \) (assume \(f(\omega) \) is known) \(\Rightarrow g(\omega) = \)
 (c) \(g(t) = \sin(\omega_0 t) \Rightarrow g(\omega) = \)

5. Vector products, Give
 (a) the projection of a vector \(\vec{a} \) on a normalized vector \(\vec{n} \):
 (b) the inner product \(\vec{a} \cdot \vec{b} \) in cartesian coordinates:
 (c) the length of a vector \(\vec{a} \) using the inner product:
 (d) the vector product \(\vec{a} \times \vec{b} \) in cartesian coordinates:

6. Evaluate the following expressions (or mark if invalid):
 (a) \(\text{grad } 5 = \)
 (b) \(\text{curl } 4 = \)
 (c) \(\text{grad}(x^2 + y^3) = \)
 (d) \(\text{curl } \text{grad } \vec{v}(\vec{r}) = \)
 (e) \(\text{div } \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \)
 (f) \(\text{curl } \begin{pmatrix} 0 \\ 0 \\ y \end{pmatrix} = \)
7. State Stokes’ and Gauss’ theorems:
 (a) \(\int_V \text{div} \vec{v}(\vec{r}) \, dV = \)
 (b) \(\int_A \text{curl} \vec{v}(\vec{r}) \cdot d\vec{a} = \)

8. Give the electrostatic potential of a point charge \(q \) located at the the position \(\vec{s} \): \(\varphi(\vec{r}) = \)

9. Write down the four Maxwell equations (for material/medium, in differential form, SI units):
 (a)
 (b)
 (c)
 (d)

10. Which electric and magnetic field components are continuous at an interface?

11. For a perfect electric conductor, the electric field strength
 (a) inside is:
 (b) at the surface is:

12. In a medium give (in terms of the real-valued e.m. fields) the definitions of
 (a) the Poynting vector: \(\vec{S} = \)
 (b) the electromagnetic energy (in a volume \(V \)): \(W = \)

13. Give the units (in SI) of
 (a) the electric field strength: \([\vec{E}] = \)
 (b) the magnetic flux density: \([\vec{B}] = \)
 (c) the current density: \([\vec{J}] = \)
 (d) the charge density: \([\rho] = \)