Ready for Fields&Waves?

Prof. Dr. Jens Förstner

September 22, 2016

The following questions cover a range of topics you should master (i.e. >75% correct answers) before starting the course Fields&Waves in the Electrical Systems Engineering programm at Paderborn University:

- 1. Evaluate
 - (a) $\sin \frac{\pi}{2} =$
 - (b) $\cos \frac{\pi}{2} =$
 - (c) $\sin^2 x + \cos^2 x =$
 - (d) $\exp(0) =$
 - (e) $\exp(-\frac{\pi}{2}j) =$
- 2. Express e^{jx} in terms of sin and cos (Euler's identity): $e^{jx} =$
- 3. Give the general real-valued solution of the ODEs
 - (a) $\frac{d^2}{dt^2}y(t) = -\omega^2 y(t)$ (with $\omega \neq 0$): y(t) =
 - (b) $\frac{d}{dt}y(t) = -\gamma y(t)$ (with $\gamma \neq 0$): y(t) =
- 4. Give the solution of the Fourier integral $g(\omega) = \int_{-\infty}^{\infty} g(t) e^{-j\omega t} dt$ for
 - (a) $g(t) = \frac{d}{dt}f(t)$ (assume $f(\omega)$ is known): $\Rightarrow g(\omega) =$
 - (b) $g(t) = f(t) e^{j\omega_0 t}$ (assume $f(\omega)$ is known) $\Rightarrow g(\omega) =$
 - (c) $g(t) = \sin(\omega_0 t) \Rightarrow g(\omega) =$
- 5. Vector products, Give
 - (a) the projection of a vector \vec{a} on a normalized vector \vec{n} :
 - (b) the inner product $\vec{a} \cdot \vec{b}$ in cartesian coordinates:
 - (c) the length of a vector \vec{a} using the innter product:
 - (d) the vector product $\vec{a} \times \vec{b}$ in cartesian coordinates:
- 6. Evaluate the following expressions (or mark if invalid):
 - (a) grad 5 =
 - (b) $\operatorname{curl} 4 =$
 - (c) $\operatorname{grad}(x^2 + y^3) =$
 - (d) curl grad $\vec{v}(\vec{r}) =$

(e) div
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} =$$

(f) curl $\begin{pmatrix} 0 \\ 0 \\ y \end{pmatrix} =$

- 7. State Stokes' and Gauss' theorems:
 - (a) $\int_V \operatorname{div} \vec{v}(\vec{r}) \, dV =$
 - (b) $\int_A \operatorname{curl} \vec{v}(\vec{r}) \cdot d\vec{a} =$
- 8. Give the electrostatic potential of a point charge q located at the position \vec{s} : $\varphi(\vec{r}) =$
- 9. Write down the four Maxwell equations (for material/medium, in differential form, SI units):
 - (a)
 - (b)
 - (c)
 - (d)
- 10. Which electric and magnetic field components are continuous at an interface?
- 11. For a perfect electric conductor, the electric field strength
 - (a) inside is:
 - (b) at the surface is:
- 12. In a medium give (in terms of the real-valued e.m. fields) the definitions of
 - (a) the Poynting vector: $\vec{S} =$
 - (b) the electromagnetic energy (in a volume V): W =
- 13. Give the units (in SI) of
 - (a) the electric field strength: $[\vec{E}] =$
 - (b) the magnetic flux denisity: $[\vec{B}] =$
 - (c) the current density: $[\vec{J}] =$
 - (d) the charge density: $[\rho] =$