The following questions cover a range of topics you should master (i.e. >75% correct answers) before starting the course Fields&Waves in the Electrical Systems Engineering program at Paderborn University:

1. Evaluate
 (a) \(\sin \frac{\pi}{2} = 1 \)
 (b) \(\cos \frac{\pi}{2} = 0 \)
 (c) \(\sin^2 x + \cos^2 x = 1 \)
 (d) \(\exp(0) = 1 \)
 (e) \(\exp(-\frac{\pi}{2} j) = -j \)

2. Express \(e^{jx} \) in terms of \(\sin \) and \(\cos \) (Euler’s identity):
 \(e^{jx} = \cos x + j \sin x \)

3. Give the general real-valued solution of the ODEs
 (a) \(\frac{d^2}{dt^2} y(t) = -\omega^2 y(t) \) (with \(\omega \neq 0 \))
 \(y(t) = a \cos(\omega t) + b \sin(\omega t) \) or \(a \sin(\omega t + \phi) \)
 (b) \(\frac{d}{dt} y(t) = -\gamma y(t) \) (with \(\gamma \neq 0 \))
 \(y(t) = ae^{-\gamma t} \)

4. Give the solution of the Fourier integral \(g(\omega) = \int_{-\infty}^{\infty} g(t) e^{-j\omega t} dt \) for
 (a) \(g(t) = \frac{d}{dt} f(t) \) (assume \(f(\omega) \) is known): \(g(\omega) = -j\omega f(\omega) \)
 (b) \(g(t) = f(t) e^{j\omega_0 t} \) (assume \(f(\omega) \) is known): \(g(\omega) = f(\omega - \omega_0) \)
 (c) \(g(t) = \sin(\omega_0 t) \) \(g(\omega) = \pi \delta(\omega - \omega_0) - \pi \delta(\omega + \omega_0) \)

5. Vector products, Give
 (a) the projection of a vector \(\vec{a} \) on a normalized vector \(\vec{n} \) : \(\vec{a} \cdot \vec{n} = a \cos \phi \)
 (b) the inner product \(\vec{a} \cdot \vec{b} \) in cartesian coordinates: \(= axbx + ayby + azbz \)
 (c) the length of a vector \(\vec{a} \) using the inner product: \(= \sqrt{\vec{a} \cdot \vec{a}} \)
 (d) the vector product \(\vec{a} \times \vec{b} \) in cartesian coordinates: \(= \begin{pmatrix} aybz - azby \\ azbx - axbz \\ axby - aybx \end{pmatrix} \)

6. Evaluate the following expressions (or mark if invalid):
 (a) \(\text{grad} 5 = 0 \)
 (b) \(\text{curl} 4 = \text{Invalid expression} \)
 (c) \(\text{grad}(x^2 + y^3) = \begin{pmatrix} 2x \\ 3y^2 \\ 0 \end{pmatrix} \)
 (d) \(\text{curl \ grad} \ \vec{v}(\vec{r}) = 0 \)
(e) \[\text{div} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 3 \]

(f) \[\text{curl} \begin{pmatrix} 0 \\ 0 \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \]

7. State Stokes’ and Gauss’ theorems:

 (a) \[\int_V \text{div} \vec{v}(\vec{r}) \, dV = \int_{\partial V} \vec{v}(\vec{r}) \cdot d\vec{a} \]

 (b) \[\int_A \text{curl} \vec{v}(\vec{r}) \cdot d\vec{a} = \int_{\partial A} \vec{v}(\vec{r}) \cdot d\vec{s} \]

8. Give the electrostatic potential of a point charge \(q \) located at the position \(\vec{s} \):
 \[\phi(\vec{r}) = \frac{q}{4\pi\epsilon_0|\vec{r} - \vec{s}|} \]

9. Write down the four Maxwell equations (for material/medium, in differential form, SI units):

 (a) \[\text{curl} \vec{E} = -\frac{d}{dt} \vec{B} \]

 (b) \[\text{curl} \vec{H} = \frac{d}{dt} \vec{D} + \vec{J} \]

 (c) \[\text{div} \vec{D} = \rho \]

 (d) \[\text{div} \vec{B} = 0 \]

10. Which electric and magnetic field components are continuous at an interface? B normal, E tangential

11. For a perfect electric conductor, the electric field strength

 (a) inside is: 0

 (b) at the surface is: orthogonal on surface

12. In a medium give (in terms of the real-valued e.m. fields) the definitions of

 (a) the Poynting vector: \(\vec{S} = \vec{E} \times \vec{H} \)

 (b) the electromagnetic energy (in a volume \(V \)): \(W = \frac{1}{2} \int_V (\vec{E} \cdot \vec{D} + \vec{H} \cdot \vec{B}) \, dV \)

13. Give the units (in SI) of

 (a) the electric field strength: \([\vec{E}] = \text{V/m} \)

 (b) the magnetic flux density: \([\vec{B}] = \text{Vs/m}^2 = \text{T} \)

 (c) the current density: \([\vec{J}] = \text{A/m}^2 \)

 (d) the charge density: \([\rho] = \text{C/m}^3 = \text{As/m}^3 \)