Modulliste

Bachelor-Master-Studienprogramm Elektrotechnik Version v2 (2012), v3 (2013) und Version v4 (2014) (Bachelor: 6 Semester, Master: 4 Semester)

sowie

Bachelor-Master-Teilzeitstudienprogramm Elektrotechnik Version v1 (2012), v2 (2013) und v3 (2014) (Bachelor: 12 Semester, Master: 8 Semester)

Fakultät für Elektrotechnik, Informatik und Mathematik der Universität Paderborn

WS 2015/16 Paderborn, 01. September 2015

I. Module im 1. Studienabschnitt des Bachelor-Studiengangs

I.1 Gebiet Mathematische Grundlagen

I.1.1 Höhere Mathematik I

Höhere Mathematik A für Elektrotechniker

I.1.2 Höhere Mathematik II

Höhere Mathematik C für Elektrotechniker

I.2 Gebiet Elektrotechnische Grundlagen

I.2.1 Grundlagen der Elektrotechnik A

Grundlagen der Elektrotechnik A

I.2.2 Energietechnik

Elektrische Energietechnik

I.2.3 Theorie der Elektrotechnik (Version v2, v3)

Elektromagnetische Wellen

I.2.4 Elektromagnetische Wellen (Version v4)

Elektromagnetische Wellen

I.3 Gebiet Technisch-physikalische Grundlagen

I.3.1 Experimentalphysik

Experimentalphysik für Elektrotechniker

I.3.2 Bauelemente (Version v2, v3)

Halbleiterbauelemente

I.3.3 Halbleiterbauelemente (Version v4)

Halbleiterbauelemente

I.4 Gebiet Grundlagen der Informations- und Systemtechnik

I.4.1 Modul Datenverarbeitung

Datenverarbeitung (Version v2) Grundlagen der Programmierung für Ingenieure II (Version v3, v4) Projekt Angewandte Programmierung

I.4.2 Modul Technische Informatik

Grundlagen der Rechnerarchitektur

I.5 Praktikum

I.5.1 Laborpraktikum und Projektseminar

II. Module im 2. Studienabschnitt des Bachelor-Studiengangs

II.1 Gebiet Vertiefungen

II.1.1 Nachrichtentechnik

Nachrichtentechnik

II.1.2 Informationstechnik

Optische Informationsübertragung

II.1.3 Schaltungstechnik

Schaltungstechnik

II.1.4 Mikrosystemtechnik

Entwurf mikroelektronischer Systeme Einführung in die Hochfrequenztechnik Mikrosystemtechnik

II.1.5 Regelungstechnik

Regelungstechnik A

II.1.6 Automatisierungstechnik

Elektrische Antriebstechnik

II.2 Bachelor-Arbeit

II.3 Gebiete Fachdidaktik und Bildungswissenschaft/Berufspädagogik

II.3.1 Bildungswissenschaften/Berufspädagogik

Kompetenzentwicklung Berufspädagogik

II.3.2 Fachdidaktik

Fachdidaktik

III. Module im Master-Studiengang

III.1 Gebiet Theoretische Elektrotechnik

III.1.1 Theoretische Elektrotechnik

Theoretische Elektrotechnik

III.2 Gebiet Statistische Signale

III.2.1 Verarbeitung statistischer Signale

Verarbeitung statistischer Signale

III.3 Kataloge der Studienmodelle

III.3.1 Energie und Umwelt

Antriebe für umweltfreundliche Fahrzeuge

Elektronische Stomversorgungen

Energieversorgungsstrukturen der Zukunft

Mensch-Haus-Umwelt

Umweltmesstechnik

Energy Transition

III.3.2 Kognitive Systeme

Aktuelle Themen aus Mustererkennung und maschinellem Lernen

Digital Image Processing I

Kognitive Sensorsysteme

Technische kognitive Systeme – Ausgewählte Kapitel

Advanced Topics in Robotics

Fahrerassistenzsysteme

III.3.3 Kommunikationstechnik

Elektromagnetische Feldsimulation

Hochfrequenztechnik

Optimale und adaptive Filter

Statistical Signal Processing

III.3.4 Mikroelektronik

Schnelle integrierte Schaltungen für die digitale Kommunikationstechnik

Test hochintegrierter Schaltungen

Algorithms and Tools for Test and Diagnosis of Systems on a Chip

Technologie hochintegrieter Schaltungen

Hochfrequenzleistungsverstärker

Theorie und Anwendung von Phasenregelkreisen

III.3.5 Optoelektronik

Optische Nachrichtentechnik A

Optische Nachrichtentechnik C

Hochfrequenzelektronik

III.3.6 Prozessdynamik

Regelungstechnik B

Regelungstheorie - Nichtlineare Regelungen

Systemtheorie - Nichtlineare Systeme

Optimale Systeme

Geregelte Drehstromantriebe

Technische Akustik

Flachheitsbasierte Regelungen

Modellbildung, Identifikation und Simulation

Ausgewählte Kapitel der Regelungstechnik

Advanced System Theory

III.4 Projektarbeit

III.5 Master-Arbeit