Marking scheme for the following questions: One point per question if all ticks are correct, half a point if all except one tick are correct, and no points otherwise.

Check all answers that apply.

1.	Let $x(t) \leftrightarrow X(\omega)$ denote a continuous-time, real valued, periodic signal and its Fourier transform. Then
	\square necessarily $X(\omega) = X^*(-\omega)$
	$\square \ X(\omega)$ is necessarily real
	$\square X(\omega)$ cannot be real
	$\square \ X(\omega)$ can be expressed as a (countable) sum of Dirac impulses
2.	The energy of a continuous-time signal $x(t)$ is
	$E_x = \int_{-\infty}^{\infty} x(t) ^2 dt$
	and its power is
	$P_x = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^T x(t) ^2 dt.$
	A signal with positive and finite energy is called an energy signal, a signal with positive and finite power is called a power signal.
	\square A signal can never be a power signal and an energy signal at the same time.
	\Box The unit step signal is a power signal.
	\Box The Dirac $\delta(t)$ impulse is a power signal.
	\square A nontrivial periodic signal cannot be an energy signal.
3.	The Dirac impulse $\delta(t)$
	\square satisfies $x(t) = \int_{-\infty}^t x(\tau) \delta(\tau) d\tau$ for every signal $x(t)$
	\square satisfies $\delta(at)=rac{1}{a}\delta(t)$ for all real $a>0$
	\square satisfies $\delta(t)*\delta(t)=\delta^2(t)$
	\Box as the input to an LTI system yields the impulse response $h(t)$ as the output
4.	Every LTI system $x(t) \mapsto S\{x(t)\}$ satisfies the following properties:
	\square $S\{ax(t)\}=aS\{x(t)\}$ for all $a\in\mathbb{C}$ and all $x(t)$
	\square $S\{x(t)+y(t)\}=S\{x(t)\}+S\{y(t)\}$ for all $x(t)$ and all $y(t)$
	$\square \ x(t) \mapsto S\{x(t)\} \implies x(t-T) \mapsto S\{x(t-T)\} \text{ for all } x(t) \text{ and any choice of } T$
	$\square \ x(t) eq y(t) \implies S\{x(t)\} eq S\{y(t)\}$
5.	The Fourier transform of $x(t)$ is $\mathcal{F}\{x(t)\} = X(\omega) = \int_{-\infty}^{\infty} x(t)e^{j\omega t}dt$. Which of the following are true?
	\Box There exist signals which are time limited (i.e., finite support in the time domain) and at the same time have limited bandwidth.
	$\square \text{ The Fourier transform of a boxcar } x(t) = \begin{cases} 1 & t \leq \frac{1}{2} \\ 0 & t > \frac{1}{2} \end{cases} \text{ is } X(\omega) = \operatorname{sinc}\left(\frac{\omega}{2\pi}\right).$
	\Box The Fourier transform of $x(t) = 1$ is $X(\omega) = 1$.
	\square The Fourier transform of $x(t) = e^{j\omega_0 t}$ is $X(\omega) = \delta(\omega - \omega_0)$.

- 6. Let $X(\theta)$ denote the DTFT of a discrete-time signal x[k]. The DTFT
 - \square is linear, i.e., $ax[k] + by[k] \leftrightarrow aX(\theta) + bY(\theta)$.
 - \Box the DTFT of x[k] = 1 is $X(\theta) = 1$
 - \square is only defined for $\theta \in [-\pi, \pi]$, outside this interval it is zero
 - \square satisfies $x[k]y[k] \leftrightarrow \frac{1}{2\pi} \int_{-\pi}^{\pi} X(\eta)Y(\theta \eta)d\eta$.
- 7. Let $X(\theta) = \sum_{k=-\infty}^{\infty} x[k]e^{-j\theta k}$ denote the DTFT of x[k] given by

$$x[k] = \begin{cases} 1 & k = -3 \\ -1 & k = -2 \\ -2 & k = -1 \\ 4 & k = 0 \\ -2 & k = 1 \\ -1 & k = 2 \\ 1 & k = 3 \\ 0 & \text{otherwise.} \end{cases}$$

Which of the following statements is true?

- $\Box X(0) = 0$
- $\square X(\theta)$ is real and satisfies $X(\theta) = X(-\theta)$
- \square $X(\theta)$ is purely imaginary and satisfies $X(\theta) = -X(-\theta)$
- $\square \ X(\pi) = \sum_{k=-3}^{3} x[k]e^{j\pi k} = \sum_{k=-3}^{3} x[k](-1)^{k} = x[0] = 4$
- 8. Let x[k] be a finite-length signal and denote by X[n] its DFT.
 - \square The FFT (Fast Fourier Transform) of x[k] is the same as its DFT.
 - \square One has to perform zero-padding for x[k] and X[n] to have the same length.
 - ☐ The convolution of finite-length signals corresponds to a circular product of the respective DFTs.
 - \square x[k] is real if and only if $X[n] = X[(N-n) \mod N]$, where N is the length of X[n].
- 9. The DFT is
 - □ continuous in time
 - periodic in the time domain
 - ☐ discrete in the time domain
 - ☐ periodic in the frequency domain
 - □ continuous in frequency
 - \square discrete in the frequency domain
- 10. Which of the following statements about continuous-time LTI systems are true?
 - \square A cascade (i.e. feed-forward) connection of two BIBO stable systems must be BIBO stable.
 - \Box The Fourier transform of the impulse response is the frequency response.
 - \square A causal LTI system has an impulse response with h(t) = 0 for t < 0.
 - \square The output y(t) of an LTI system with impulse response h(t) and input x(t) is y(t) = x(t) * h(t), where * denotes convolution.

- 11. Denote by $X(\omega)$ the Fourier transform of x(t). The signal x(t) is sampled with sampling period T > 0 to obtain x[k] = x(kT).
 - \Box If $2\pi/T \geq 2\omega_{\max}$, where ω_{\max} is such that $X(\omega) = 0$ for all $|\omega| > \omega_{\max}$, then the original signal x(t) can be perfectly reconstructed.
 - \Box The original signal x(t) can be perfectly reconstructed only if $2\pi/T \geq 2\omega_{\text{max}}$.
 - \Box Ideal sampling of a time signal as x[k] = x(kT) is not possible in practice, as a measurement is always an average over some (small) time interval ΔT .
 - \square Since a perfect reconstruction filter has a non-causal impulse response h(t) = sinc(t/T), perfect reconstruction is not possible in real time.
- 12. Consider the following periodic continuous-time signal and decide which of the properties listed below it satisfies. Let $X(\omega)$ denote its Fourier transform.

- $\square \operatorname{Re}X(\omega) = 0$
- $\square \operatorname{Im} X(\omega) = 0$
- $\Box \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega < \infty$
- $\square X(\omega) \neq 0$ only for a countable number of frequencies
- 13. Consider the following continuous-time signal and decide which of the properties listed below it satisfies. Let $X(\omega)$ denote its Fourier transform.

- $\square \operatorname{Re}X(\omega) = 0$
- \square Im $X(\omega) = 0$
- \square There exists a $\phi \in \mathbb{R}$ such that $e^{j\phi\omega}X(\omega)$ is real.
- $\square X(\omega)$ is periodic.
- 14. Consider a signal x[k] of length 6. We also know that |X[0]| = 12, |X[1]| = 7, |X[2]| = 3, |X[3]| = 0, |X[4]| = 3, |X[5]| = 7.
 - \square The signal x[k] must be real valued.
 - \square The signal x[k] must be purely imaginary.
 - $\hfill\Box$ The signal x[k] must be complex valued.
 - ☐ We are not given enough information to decide for one of the above.
- 15. Which of the following statements are generally true? (The asterisk * denotes convolution.)
 - $\square \ x(t) * \delta(t) = x(t)$
 - $\square \ x(t) * \delta(t t_0) = x(t t_0)$
 - $\square \ x(t)\delta(t-t_0) = x(t_0)$
 - \square $\delta(t) = 0$ for $t \neq 0$

- 16. Let H(s) denote the Laplace transformation of the impulse response h(t) of an LTI system.
 - \Box If the Fourier transform of h(t) exists, then it is given by $H(j\omega)$.
 - ☐ The impulse response of an LTI system can have either a Laplace transform or a Fourier transform, but not both.
 - \Box The LTI system is BIBO stable if all poles of H(s) lie in the left open complex half-plane.
 - \Box The LTI system is BIBO stable if the Fourier transform of h(t) has no poles for positive frequencies.

Marking scheme for the following questions:

One point per question if all ticks are correct and no points otherwise.

17. The 99% bandwidth B_{99} of a signal x(t) with Fourier transform $X(\omega)$ is defined through the relation

$$\int_{-B_{99}}^{B_{99}} |X(\omega)|^2 d\omega = 0.99 \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega.$$

Consider the signals

- \square Signal x(t) has the largest 99% bandwidth, followed by y(t), followed by z(t).
- \square Signal x(t) has the largest 99% bandwidth, followed by z(t), followed by y(t).
- \square Signal y(t) has the largest 99% bandwidth, followed by x(t), followed by z(t).
- \square Signal y(t) has the largest 99% bandwidth, followed by z(t), followed by x(t).
- \square Signal z(t) has the largest 99% bandwidth, followed by x(t), followed by y(t).
- \square Signal z(t) has the largest 99% bandwidth, followed by y(t), followed by x(t).
- 18. Consider the signals

- \square Signal x(t) has the largest 99% bandwidth, followed by y(t), followed by z(t).
- \square Signal x(t) has the largest 99% bandwidth, followed by z(t), followed by y(t).
- \square Signal y(t) has the largest 99% bandwidth, followed by x(t), followed by z(t).
- \square Signal y(t) has the largest 99% bandwidth, followed by z(t), followed by x(t).
- \square Signal z(t) has the largest 99% bandwidth, followed by x(t), followed by y(t).
- \square Signal z(t) has the largest 99% bandwidth, followed by y(t), followed by z(t).

- 19. The signal $x(t) = e^{0.02t^2} \operatorname{sinc}(t)$ is sampled with a sampling interval T > 0. We find that the DTFT of the sampled signal satisfies $X(\theta) = 1$. What is the smallest T that can explain this result?
 - $\Box T = 1/2$
 - $\Box T = 1$
 - \square T=2
 - \square There is no such minimal T > 0.
- 20. Let $x[k] = \begin{cases} 1 & k = 0 \\ 2 & k = 1 \\ -1 & k = 2 \\ 0 & \text{otherwise} \end{cases}$ and $y[k] = \begin{cases} 1 & k = -1 \\ 2 & k = +1 \\ 0 & \text{otherwise.} \end{cases}$

The convolution z[k] = x[k] * y[k] yields

$$\square \ z[k] = \begin{cases} 1 & k = 0 \\ 2 & k = 1 \\ 1 & k = 2 \\ 4 & k = 3 \\ -2 & k = 4 \\ 0 & \text{otherwise} \end{cases}$$

$$\square \ z[k] = \begin{cases} 1 & k = -1 \\ 2 & k = 0 \\ 1 & k = 1 \\ 4 & k = 2 \\ -2 & k = 3 \\ 0 & \text{otherwise} \end{cases}$$

$$\Box \ z[k] = \begin{cases} 1 & k = 0 \\ 2 & k = 1 \\ 3 & k = 2 \\ 4 & k = 3 \\ 0 & \text{otherwise} \end{cases}$$

$$\Box z[k] = \begin{cases} 1 & k = -1\\ 2 & k = 0\\ 3 & k = 1\\ 4 & k = 2\\ 0 & \text{otherwise} \end{cases}$$